Spaces:
Running
Running
File size: 13,317 Bytes
f774f0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import torch
import torch.nn as nn
from torchvision.utils import make_grid as make_image_grid
from torchvision.utils import save_image
import argparse
import os
import time
from cp_dataset_test import CPDatasetTest, CPDataLoader
from networks import ConditionGenerator, load_checkpoint, make_grid
from network_generator import SPADEGenerator
from tensorboardX import SummaryWriter
from utils import *
import torchgeometry as tgm
from collections import OrderedDict
def remove_overlap(seg_out, warped_cm):
assert len(warped_cm.shape) == 4
warped_cm = warped_cm - (torch.cat([seg_out[:, 1:3, :, :], seg_out[:, 5:, :, :]], dim=1)).sum(dim=1, keepdim=True) * warped_cm
return warped_cm
def get_opt():
parser = argparse.ArgumentParser()
parser.add_argument("--gpu_ids", default="")
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('-b', '--batch-size', type=int, default=1)
parser.add_argument('--fp16', action='store_true', help='use amp')
# Cuda availability
parser.add_argument('--cuda',default=False, help='cuda or cpu')
parser.add_argument('--test_name', type=str, default='test', help='test name')
parser.add_argument("--dataroot", default="./data/zalando-hd-resize")
parser.add_argument("--datamode", default="test")
parser.add_argument("--data_list", default="test_pairs.txt")
parser.add_argument("--output_dir", type=str, default="./Output")
parser.add_argument("--datasetting", default="unpaired")
parser.add_argument("--fine_width", type=int, default=768)
parser.add_argument("--fine_height", type=int, default=1024)
parser.add_argument('--tensorboard_dir', type=str, default='./data/zalando-hd-resize/tensorboard', help='save tensorboard infos')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoints', help='save checkpoint infos')
parser.add_argument('--tocg_checkpoint', type=str, default='./eval_models/weights/v0.1/mtviton.pth', help='tocg checkpoint')
parser.add_argument('--gen_checkpoint', type=str, default='./eval_models/weights/v0.1/gen.pth', help='G checkpoint')
parser.add_argument("--tensorboard_count", type=int, default=100)
parser.add_argument("--shuffle", action='store_true', help='shuffle input data')
parser.add_argument("--semantic_nc", type=int, default=13)
parser.add_argument("--output_nc", type=int, default=13)
parser.add_argument('--gen_semantic_nc', type=int, default=7, help='# of input label classes without unknown class')
# network
parser.add_argument("--warp_feature", choices=['encoder', 'T1'], default="T1")
parser.add_argument("--out_layer", choices=['relu', 'conv'], default="relu")
# training
parser.add_argument("--clothmask_composition", type=str, choices=['no_composition', 'detach', 'warp_grad'], default='warp_grad')
# Hyper-parameters
parser.add_argument('--upsample', type=str, default='bilinear', choices=['nearest', 'bilinear'])
parser.add_argument('--occlusion', action='store_true', help="Occlusion handling")
# generator
parser.add_argument('--norm_G', type=str, default='spectralaliasinstance', help='instance normalization or batch normalization')
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
parser.add_argument('--init_type', type=str, default='xavier', help='network initialization [normal|xavier|kaiming|orthogonal]')
parser.add_argument('--init_variance', type=float, default=0.02, help='variance of the initialization distribution')
parser.add_argument('--num_upsampling_layers', choices=('normal', 'more', 'most'), default='most', # normal: 256, more: 512
help="If 'more', adds upsampling layer between the two middle resnet blocks. If 'most', also add one more upsampling + resnet layer at the end of the generator")
opt = parser.parse_args()
return opt
def load_checkpoint_G(model, checkpoint_path,opt):
if not os.path.exists(checkpoint_path):
print("Invalid path!")
return
state_dict = torch.load(checkpoint_path)
new_state_dict = OrderedDict([(k.replace('ace', 'alias').replace('.Spade', ''), v) for (k, v) in state_dict.items()])
new_state_dict._metadata = OrderedDict([(k.replace('ace', 'alias').replace('.Spade', ''), v) for (k, v) in state_dict._metadata.items()])
model.load_state_dict(new_state_dict, strict=True)
if opt.cuda :
model.cuda()
def test(opt, test_loader, tocg, generator):
gauss = tgm.image.GaussianBlur((15, 15), (3, 3))
if opt.cuda:
gauss = gauss.cuda()
# Model
if opt.cuda :
tocg.cuda()
tocg.eval()
generator.eval()
if opt.output_dir is not None:
output_dir = opt.output_dir
else:
output_dir = os.path.join('./output', opt.test_name,
opt.datamode, opt.datasetting, 'generator', 'output')
grid_dir = os.path.join('./output', opt.test_name,
opt.datamode, opt.datasetting, 'generator', 'grid')
os.makedirs(grid_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
num = 0
iter_start_time = time.time()
with torch.no_grad():
for inputs in test_loader.data_loader:
if opt.cuda :
pose_map = inputs['pose'].cuda()
pre_clothes_mask = inputs['cloth_mask'][opt.datasetting].cuda()
label = inputs['parse']
parse_agnostic = inputs['parse_agnostic']
agnostic = inputs['agnostic'].cuda()
clothes = inputs['cloth'][opt.datasetting].cuda() # target cloth
densepose = inputs['densepose'].cuda()
im = inputs['image']
input_label, input_parse_agnostic = label.cuda(), parse_agnostic.cuda()
pre_clothes_mask = torch.FloatTensor((pre_clothes_mask.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
else :
pose_map = inputs['pose']
pre_clothes_mask = inputs['cloth_mask'][opt.datasetting]
label = inputs['parse']
parse_agnostic = inputs['parse_agnostic']
agnostic = inputs['agnostic']
clothes = inputs['cloth'][opt.datasetting] # target cloth
densepose = inputs['densepose']
im = inputs['image']
input_label, input_parse_agnostic = label, parse_agnostic
pre_clothes_mask = torch.FloatTensor((pre_clothes_mask.detach().cpu().numpy() > 0.5).astype(np.float))
# down
pose_map_down = F.interpolate(pose_map, size=(256, 192), mode='bilinear')
pre_clothes_mask_down = F.interpolate(pre_clothes_mask, size=(256, 192), mode='nearest')
input_label_down = F.interpolate(input_label, size=(256, 192), mode='bilinear')
input_parse_agnostic_down = F.interpolate(input_parse_agnostic, size=(256, 192), mode='nearest')
agnostic_down = F.interpolate(agnostic, size=(256, 192), mode='nearest')
clothes_down = F.interpolate(clothes, size=(256, 192), mode='bilinear')
densepose_down = F.interpolate(densepose, size=(256, 192), mode='bilinear')
shape = pre_clothes_mask.shape
# multi-task inputs
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
# forward
flow_list, fake_segmap, warped_cloth_paired, warped_clothmask_paired = tocg(opt,input1, input2)
# warped cloth mask one hot
if opt.cuda :
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
else :
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float))
if opt.clothmask_composition != 'no_composition':
if opt.clothmask_composition == 'detach':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_cm_onehot
fake_segmap = fake_segmap * cloth_mask
if opt.clothmask_composition == 'warp_grad':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired
fake_segmap = fake_segmap * cloth_mask
# make generator input parse map
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(opt.fine_height, opt.fine_width), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
if opt.cuda :
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
else:
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
if opt.cuda :
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
else:
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
# warped cloth
N, _, iH, iW = clothes.shape
flow = F.interpolate(flow_list[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((96 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((128 - 1.0) / 2.0)], 3)
grid = make_grid(N, iH, iW,opt)
warped_grid = grid + flow_norm
warped_cloth = F.grid_sample(clothes, warped_grid, padding_mode='border')
warped_clothmask = F.grid_sample(pre_clothes_mask, warped_grid, padding_mode='border')
if opt.occlusion:
warped_clothmask = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask)
warped_cloth = warped_cloth * warped_clothmask + torch.ones_like(warped_cloth) * (1-warped_clothmask)
output = generator(torch.cat((agnostic, densepose, warped_cloth), dim=1), parse)
# visualize
unpaired_names = []
for i in range(shape[0]):
grid = make_image_grid([(clothes[i].cpu() / 2 + 0.5), (pre_clothes_mask[i].cpu()).expand(3, -1, -1), visualize_segmap(parse_agnostic.cpu(), batch=i), ((densepose.cpu()[i]+1)/2),
(warped_cloth[i].cpu().detach() / 2 + 0.5), (warped_clothmask[i].cpu().detach()).expand(3, -1, -1), visualize_segmap(fake_parse_gauss.cpu(), batch=i),
(pose_map[i].cpu()/2 +0.5), (warped_cloth[i].cpu()/2 + 0.5), (agnostic[i].cpu()/2 + 0.5),
(im[i]/2 +0.5), (output[i].cpu()/2 +0.5)],
nrow=4)
unpaired_name = (inputs['c_name']['paired'][i].split('.')[0] + '_' + inputs['c_name'][opt.datasetting][i].split('.')[0] + '.png')
save_image(grid, os.path.join(grid_dir, unpaired_name))
unpaired_names.append(unpaired_name)
# save output
save_images(output, unpaired_names, output_dir)
num += shape[0]
print(num)
print(f"Test time {time.time() - iter_start_time}")
def main():
opt = get_opt()
print(opt)
print("Start to test %s!")
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_ids
# create test dataset & loader
test_dataset = CPDatasetTest(opt)
test_loader = CPDataLoader(opt, test_dataset)
# visualization
# if not os.path.exists(opt.tensorboard_dir):
# os.makedirs(opt.tensorboard_dir)
# board = SummaryWriter(log_dir=os.path.join(opt.tensorboard_dir, opt.test_name, opt.datamode, opt.datasetting))
## Model
# tocg
input1_nc = 4 # cloth + cloth-mask
input2_nc = opt.semantic_nc + 3 # parse_agnostic + densepose
tocg = ConditionGenerator(opt, input1_nc=input1_nc, input2_nc=input2_nc, output_nc=opt.output_nc, ngf=96, norm_layer=nn.BatchNorm2d)
# generator
opt.semantic_nc = 7
generator = SPADEGenerator(opt, 3+3+3)
generator.print_network()
# Load Checkpoint
load_checkpoint(tocg, opt.tocg_checkpoint,opt)
load_checkpoint_G(generator, opt.gen_checkpoint,opt)
# Train
test(opt, test_loader, tocg, generator)
print("Finished testing!")
if __name__ == "__main__":
main() |