Spaces:
Running
Running
import torch | |
import torch.utils.data as data | |
import torchvision.transforms as transforms | |
from PIL import Image, ImageDraw | |
import os.path as osp | |
import numpy as np | |
import json | |
class CPDatasetTest(data.Dataset): | |
""" | |
Test Dataset for CP-VTON. | |
""" | |
def __init__(self, opt): | |
super(CPDatasetTest, self).__init__() | |
# base setting | |
self.opt = opt | |
self.root = opt.dataroot | |
self.datamode = opt.datamode # train or test or self-defined | |
self.data_list = opt.data_list | |
self.fine_height = opt.fine_height | |
self.fine_width = opt.fine_width | |
self.semantic_nc = opt.semantic_nc | |
self.data_path = osp.join(opt.dataroot, opt.datamode) | |
self.transform = transforms.Compose([ \ | |
transforms.ToTensor(), \ | |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | |
# load data list | |
im_names = [] | |
c_names = [] | |
with open(osp.join(opt.dataroot, opt.data_list), 'r') as f: | |
for line in f.readlines(): | |
im_name, c_name = line.strip().split() | |
im_names.append(im_name) | |
c_names.append(c_name) | |
self.im_names = im_names | |
self.c_names = dict() | |
self.c_names['paired'] = im_names | |
self.c_names['unpaired'] = c_names | |
def name(self): | |
return "CPDataset" | |
def get_agnostic(self, im, im_parse, pose_data): | |
parse_array = np.array(im_parse) | |
parse_head = ((parse_array == 4).astype(np.float32) + | |
(parse_array == 13).astype(np.float32)) | |
parse_lower = ((parse_array == 9).astype(np.float32) + | |
(parse_array == 12).astype(np.float32) + | |
(parse_array == 16).astype(np.float32) + | |
(parse_array == 17).astype(np.float32) + | |
(parse_array == 18).astype(np.float32) + | |
(parse_array == 19).astype(np.float32)) | |
agnostic = im.copy() | |
agnostic_draw = ImageDraw.Draw(agnostic) | |
length_a = np.linalg.norm(pose_data[5] - pose_data[2]) | |
length_b = np.linalg.norm(pose_data[12] - pose_data[9]) | |
point = (pose_data[9] + pose_data[12]) / 2 | |
pose_data[9] = point + (pose_data[9] - point) / length_b * length_a | |
pose_data[12] = point + (pose_data[12] - point) / length_b * length_a | |
r = int(length_a / 16) + 1 | |
# mask torso | |
for i in [9, 12]: | |
pointx, pointy = pose_data[i] | |
agnostic_draw.ellipse((pointx-r*3, pointy-r*6, pointx+r*3, pointy+r*6), 'gray', 'gray') | |
agnostic_draw.line([tuple(pose_data[i]) for i in [2, 9]], 'gray', width=r*6) | |
agnostic_draw.line([tuple(pose_data[i]) for i in [5, 12]], 'gray', width=r*6) | |
agnostic_draw.line([tuple(pose_data[i]) for i in [9, 12]], 'gray', width=r*12) | |
agnostic_draw.polygon([tuple(pose_data[i]) for i in [2, 5, 12, 9]], 'gray', 'gray') | |
# mask neck | |
pointx, pointy = pose_data[1] | |
agnostic_draw.rectangle((pointx-r*5, pointy-r*9, pointx+r*5, pointy), 'gray', 'gray') | |
# mask arms | |
agnostic_draw.line([tuple(pose_data[i]) for i in [2, 5]], 'gray', width=r*12) | |
for i in [2, 5]: | |
pointx, pointy = pose_data[i] | |
agnostic_draw.ellipse((pointx-r*5, pointy-r*6, pointx+r*5, pointy+r*6), 'gray', 'gray') | |
for i in [3, 4, 6, 7]: | |
if (pose_data[i-1, 0] == 0.0 and pose_data[i-1, 1] == 0.0) or (pose_data[i, 0] == 0.0 and pose_data[i, 1] == 0.0): | |
continue | |
agnostic_draw.line([tuple(pose_data[j]) for j in [i - 1, i]], 'gray', width=r*10) | |
pointx, pointy = pose_data[i] | |
agnostic_draw.ellipse((pointx-r*5, pointy-r*5, pointx+r*5, pointy+r*5), 'gray', 'gray') | |
for parse_id, pose_ids in [(14, [5, 6, 7]), (15, [2, 3, 4])]: | |
mask_arm = Image.new('L', (768, 1024), 'white') | |
mask_arm_draw = ImageDraw.Draw(mask_arm) | |
pointx, pointy = pose_data[pose_ids[0]] | |
mask_arm_draw.ellipse((pointx-r*5, pointy-r*6, pointx+r*5, pointy+r*6), 'black', 'black') | |
for i in pose_ids[1:]: | |
if (pose_data[i-1, 0] == 0.0 and pose_data[i-1, 1] == 0.0) or (pose_data[i, 0] == 0.0 and pose_data[i, 1] == 0.0): | |
continue | |
mask_arm_draw.line([tuple(pose_data[j]) for j in [i - 1, i]], 'black', width=r*10) | |
pointx, pointy = pose_data[i] | |
if i != pose_ids[-1]: | |
mask_arm_draw.ellipse((pointx-r*5, pointy-r*5, pointx+r*5, pointy+r*5), 'black', 'black') | |
mask_arm_draw.ellipse((pointx-r*4, pointy-r*4, pointx+r*4, pointy+r*4), 'black', 'black') | |
parse_arm = (np.array(mask_arm) / 255) * (parse_array == parse_id).astype(np.float32) | |
agnostic.paste(im, None, Image.fromarray(np.uint8(parse_arm * 255), 'L')) | |
agnostic.paste(im, None, Image.fromarray(np.uint8(parse_head * 255), 'L')) | |
agnostic.paste(im, None, Image.fromarray(np.uint8(parse_lower * 255), 'L')) | |
return agnostic | |
def __getitem__(self, index): | |
im_name = self.im_names[index] | |
c_name = {} | |
c = {} | |
cm = {} | |
for key in self.c_names: | |
c_name[key] = self.c_names[key][index] | |
c[key] = Image.open(osp.join(self.data_path, 'cloth', c_name[key])).convert('RGB') | |
c[key] = transforms.Resize(self.fine_width, interpolation=2)(c[key]) | |
cm[key] = Image.open(osp.join(self.data_path, 'cloth-mask', c_name[key])) | |
cm[key] = transforms.Resize(self.fine_width, interpolation=0)(cm[key]) | |
c[key] = self.transform(c[key]) # [-1,1] | |
cm_array = np.array(cm[key]) | |
cm_array = (cm_array >= 128).astype(np.float32) | |
cm[key] = torch.from_numpy(cm_array) # [0,1] | |
cm[key].unsqueeze_(0) | |
# person image | |
im_pil_big = Image.open(osp.join(self.data_path, 'image', im_name)) | |
im_pil = transforms.Resize(self.fine_width, interpolation=2)(im_pil_big) | |
im = self.transform(im_pil) | |
# load parsing image | |
parse_name = im_name.replace('.jpg', '.png') | |
im_parse_pil_big = Image.open(osp.join(self.data_path, 'image-parse-v3', parse_name)) | |
im_parse_pil = transforms.Resize(self.fine_width, interpolation=0)(im_parse_pil_big) | |
parse = torch.from_numpy(np.array(im_parse_pil)[None]).long() | |
im_parse = self.transform(im_parse_pil.convert('RGB')) | |
labels = { | |
0: ['background', [0, 10]], | |
1: ['hair', [1, 2]], | |
2: ['face', [4, 13]], | |
3: ['upper', [5, 6, 7]], | |
4: ['bottom', [9, 12]], | |
5: ['left_arm', [14]], | |
6: ['right_arm', [15]], | |
7: ['left_leg', [16]], | |
8: ['right_leg', [17]], | |
9: ['left_shoe', [18]], | |
10: ['right_shoe', [19]], | |
11: ['socks', [8]], | |
12: ['noise', [3, 11]] | |
} | |
parse_map = torch.FloatTensor(20, self.fine_height, self.fine_width).zero_() | |
parse_map = parse_map.scatter_(0, parse, 1.0) | |
new_parse_map = torch.FloatTensor(self.semantic_nc, self.fine_height, self.fine_width).zero_() | |
for i in range(len(labels)): | |
for label in labels[i][1]: | |
new_parse_map[i] += parse_map[label] | |
parse_onehot = torch.FloatTensor(1, self.fine_height, self.fine_width).zero_() | |
for i in range(len(labels)): | |
for label in labels[i][1]: | |
parse_onehot[0] += parse_map[label] * i | |
# load image-parse-agnostic | |
image_parse_agnostic = Image.open(osp.join(self.data_path, 'image-parse-agnostic-v3.2', parse_name)) | |
image_parse_agnostic = transforms.Resize(self.fine_width, interpolation=0)(image_parse_agnostic) | |
parse_agnostic = torch.from_numpy(np.array(image_parse_agnostic)[None]).long() | |
image_parse_agnostic = self.transform(image_parse_agnostic.convert('RGB')) | |
parse_agnostic_map = torch.FloatTensor(20, self.fine_height, self.fine_width).zero_() | |
parse_agnostic_map = parse_agnostic_map.scatter_(0, parse_agnostic, 1.0) | |
new_parse_agnostic_map = torch.FloatTensor(self.semantic_nc, self.fine_height, self.fine_width).zero_() | |
for i in range(len(labels)): | |
for label in labels[i][1]: | |
new_parse_agnostic_map[i] += parse_agnostic_map[label] | |
# parse cloth & parse cloth mask | |
pcm = new_parse_map[3:4] | |
im_c = im * pcm + (1 - pcm) | |
# load pose points | |
pose_name = im_name.replace('.jpg', '_rendered.png') | |
pose_map = Image.open(osp.join(self.data_path, 'openpose_img', pose_name)) | |
pose_map = transforms.Resize(self.fine_width, interpolation=2)(pose_map) | |
pose_map = self.transform(pose_map) # [-1,1] | |
pose_name = im_name.replace('.jpg', '_keypoints.json') | |
with open(osp.join(self.data_path, 'openpose_json', pose_name), 'r') as f: | |
pose_label = json.load(f) | |
pose_data = pose_label['people'][0]['pose_keypoints_2d'] | |
pose_data = np.array(pose_data) | |
pose_data = pose_data.reshape((-1, 3))[:, :2] | |
# load densepose | |
densepose_name = im_name.replace('image', 'image-densepose') | |
densepose_map = Image.open(osp.join(self.data_path, 'image-densepose', densepose_name)) | |
densepose_map = transforms.Resize(self.fine_width, interpolation=2)(densepose_map) | |
densepose_map = self.transform(densepose_map) # [-1,1] | |
agnostic = self.get_agnostic(im_pil_big, im_parse_pil_big, pose_data) | |
agnostic = transforms.Resize(self.fine_width, interpolation=2)(agnostic) | |
agnostic = self.transform(agnostic) | |
result = { | |
'c_name': c_name, # for visualization | |
'im_name': im_name, # for visualization or ground truth | |
# intput 1 (clothfloww) | |
'cloth': c, # for input | |
'cloth_mask': cm, # for input | |
# intput 2 (segnet) | |
'parse_agnostic': new_parse_agnostic_map, | |
'densepose': densepose_map, | |
'pose': pose_map, # for conditioning | |
# GT | |
'parse_onehot' : parse_onehot, # Cross Entropy | |
'parse': new_parse_map, # GAN Loss real | |
'pcm': pcm, # L1 Loss & vis | |
'parse_cloth': im_c, # VGG Loss & vis | |
# visualization | |
'image': im, # for visualization | |
'agnostic' : agnostic | |
} | |
return result | |
def __len__(self): | |
return len(self.im_names) | |
class CPDataLoader(object): | |
def __init__(self, opt, dataset): | |
super(CPDataLoader, self).__init__() | |
if opt.shuffle : | |
train_sampler = torch.utils.data.sampler.RandomSampler(dataset) | |
else: | |
train_sampler = None | |
self.data_loader = torch.utils.data.DataLoader( | |
dataset, batch_size=opt.batch_size, shuffle=(train_sampler is None), | |
num_workers=opt.workers, pin_memory=True, drop_last=True, sampler=train_sampler) | |
self.dataset = dataset | |
self.data_iter = self.data_loader.__iter__() | |
def next_batch(self): | |
try: | |
batch = self.data_iter.__next__() | |
except StopIteration: | |
self.data_iter = self.data_loader.__iter__() | |
batch = self.data_iter.__next__() | |
return batch |