import torch from torchvision import transforms from PIL import Image import torch.nn.functional as F import numpy as np import cv2 import os def get_clothes_mask(old_label) : clothes = torch.FloatTensor((old_label.cpu().numpy() == 3).astype(np.int)) return clothes def changearm(old_label): label=old_label arm1=torch.FloatTensor((old_label.cpu().numpy()==5).astype(np.int)) arm2=torch.FloatTensor((old_label.cpu().numpy()==6).astype(np.int)) label=label*(1-arm1)+arm1*3 label=label*(1-arm2)+arm2*3 return label def gen_noise(shape): noise = np.zeros(shape, dtype=np.uint8) ### noise noise = cv2.randn(noise, 0, 255) noise = np.asarray(noise / 255, dtype=np.uint8) noise = torch.tensor(noise, dtype=torch.float32) return noise def cross_entropy2d(input, target, weight=None, size_average=True): n, c, h, w = input.size() nt, ht, wt = target.size() # Handle inconsistent size between input and target if h != ht or w != wt: input = F.interpolate(input, size=(ht, wt), mode="bilinear", align_corners=True) input = input.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c) target = target.view(-1) loss = F.cross_entropy( input, target, weight=weight, size_average=size_average, ignore_index=250 ) return loss def ndim_tensor2im(image_tensor, imtype=np.uint8, batch=0): image_numpy = image_tensor[batch].cpu().float().numpy() result = np.argmax(image_numpy, axis=0) return result.astype(imtype) def visualize_segmap(input, multi_channel=True, tensor_out=True, batch=0) : palette = [ 0, 0, 0, 128, 0, 0, 254, 0, 0, 0, 85, 0, 169, 0, 51, 254, 85, 0, 0, 0, 85, 0, 119, 220, 85, 85, 0, 0, 85, 85, 85, 51, 0, 52, 86, 128, 0, 128, 0, 0, 0, 254, 51, 169, 220, 0, 254, 254, 85, 254, 169, 169, 254, 85, 254, 254, 0, 254, 169, 0 ] input = input.detach() if multi_channel : input = ndim_tensor2im(input,batch=batch) else : input = input[batch][0].cpu() input = np.asarray(input) input = input.astype(np.uint8) input = Image.fromarray(input, 'P') input.putpalette(palette) if tensor_out : trans = transforms.ToTensor() return trans(input.convert('RGB')) return input def pred_to_onehot(prediction) : size = prediction.shape prediction_max = torch.argmax(prediction, dim=1) oneHot_size = (size[0], 13, size[2], size[3]) pred_onehot = torch.FloatTensor(torch.Size(oneHot_size)).zero_() pred_onehot = pred_onehot.scatter_(1, prediction_max.unsqueeze(1).data.long(), 1.0) return pred_onehot def cal_miou(prediction, target) : size = prediction.shape target = target.cpu() prediction = pred_to_onehot(prediction.detach().cpu()) list = [1,2,3,4,5,6,7,8] union = 0 intersection = 0 for b in range(size[0]) : for c in list : intersection += torch.logical_and(target[b,c], prediction[b,c]).sum() union += torch.logical_or(target[b,c], prediction[b,c]).sum() return intersection.item()/union.item() def save_images(img_tensors, img_names, save_dir): for img_tensor, img_name in zip(img_tensors, img_names): tensor = (img_tensor.clone() + 1) * 0.5 * 255 tensor = tensor.cpu().clamp(0, 255) try: array = tensor.numpy().astype('uint8') except: array = tensor.detach().numpy().astype('uint8') if array.shape[0] == 1: array = array.squeeze(0) elif array.shape[0] == 3: array = array.swapaxes(0, 1).swapaxes(1, 2) im = Image.fromarray(array) im.save(os.path.join(save_dir, img_name), format='JPEG') def create_network(cls, opt): net = cls(opt) net.print_network() if len(opt.gpu_ids) > 0: assert(torch.cuda.is_available()) net.cuda() net.init_weights(opt.init_type, opt.init_variance) return net