Spaces:
Runtime error
Runtime error
File size: 36,733 Bytes
9867d34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 |
from typing import List, Tuple, Optional, Union, Dict
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from einops.layers.torch import Rearrange
from diffusers.models import ModelMixin
from diffusers.configuration_utils import ConfigMixin, register_to_config
from .nn.activation_layers import SwiGLU, get_activation_layer
from .nn.attn_layers import apply_rotary_emb, attention
from .nn.embed_layers import TimestepEmbedder, ConditionProjection, PatchEmbed1D
from .nn.mlp_layers import MLP, ConvMLP, FinalLayer1D, ChannelLastConv1d
from .nn.modulate_layers import ModulateDiT, ckpt_wrapper, apply_gate, modulate
from .nn.norm_layers import get_norm_layer
from .nn.posemb_layers import get_nd_rotary_pos_embed
def interleave_two_sequences(x1: torch.Tensor, x2: torch.Tensor):
# [B, N1, H, C] & [B, N2, H, C]
B, N1, H, C = x1.shape
B, N2, H, C = x2.shape
assert x1.ndim == x2.ndim == 4
if N1 != N2:
x2 = x2.view(B, N2, -1).transpose(1, 2)
x2 = F.interpolate(x2, size=(N1), mode="nearest-exact")
x2 = x2.transpose(1, 2).view(B, N1, H, C)
x = torch.stack((x1, x2), dim=2)
x = x.reshape(B, N1 * 2, H, C)
return x
def decouple_interleaved_two_sequences(x: torch.Tensor, len1: int, len2: int):
B, N, H, C = x.shape
assert N % 2 == 0 and N // 2 == len1
x = x.reshape(B, -1, 2, H, C)
x1 = x[:, :, 0]
x2 = x[:, :, 1]
if x2.shape[1] != len2:
x2 = x2.view(B, len1, H * C).transpose(1, 2)
x2 = F.interpolate(x2, size=(len2), mode="nearest-exact")
x2 = x2.transpose(1, 2).view(B, len2, H, C)
return x1, x2
class TwoStreamCABlock(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float,
mlp_act_type: str = "gelu_tanh",
qk_norm: bool = True,
qk_norm_type: str = "rms",
qkv_bias: bool = False,
attn_mode: str = "torch",
reverse: bool = False,
interleaved_audio_visual_rope: bool = False,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.deterministic = False
self.reverse = reverse
self.attn_mode = attn_mode
self.num_heads = num_heads
self.hidden_size = hidden_size
head_dim = hidden_size // num_heads
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.interleaved_audio_visual_rope = interleaved_audio_visual_rope
# Self attention for audio + visual
self.audio_mod = ModulateDiT(hidden_size, factor=9, act_layer=get_activation_layer("silu"), **factory_kwargs)
self.audio_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.audio_self_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.audio_self_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.audio_self_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.audio_self_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
# visual cond
self.v_cond_mod = ModulateDiT(hidden_size, factor=9, act_layer=get_activation_layer("silu"), **factory_kwargs)
self.v_cond_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.v_cond_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
self.v_cond_attn_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.v_cond_attn_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.v_cond_self_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
self.max_text_len = 100
self.rope_dim_list = None
# audio and video norm for cross attention with text
self.audio_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.v_cond_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
# Cross attention: (video_audio) as query, text as key/value
self.audio_cross_q = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
self.v_cond_cross_q = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
self.text_cross_kv = nn.Linear(hidden_size, hidden_size * 2, bias=qkv_bias, **factory_kwargs)
self.audio_cross_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.v_cond_cross_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.text_cross_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.audio_cross_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
self.v_cond_cross_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
# MLPs
self.audio_norm3 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.audio_mlp = MLP(
hidden_size, mlp_hidden_dim, act_layer=get_activation_layer(mlp_act_type), bias=True, **factory_kwargs
)
self.v_cond_norm3 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.v_cond_mlp = MLP(
hidden_size, mlp_hidden_dim, act_layer=get_activation_layer(mlp_act_type), bias=True, **factory_kwargs
)
def build_rope_for_text(self, text_len, head_dim, rope_dim_list=None):
target_ndim = 1 # n-d RoPE
rope_sizes = [text_len]
if rope_dim_list is None:
rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) should equal to head_dim of attention layer"
text_freqs_cos, text_freqs_sin = get_nd_rotary_pos_embed(
rope_dim_list=rope_dim_list,
start=rope_sizes,
theta=10000,
use_real=True,
theta_rescale_factor=1.0,
)
return text_freqs_cos, text_freqs_sin
def set_attn_mode(self, new_mode):
if new_mode != "torch":
raise NotImplementedError(f"Only support 'torch' mode, got {new_mode}.")
self.attn_mode = new_mode
def enable_deterministic(self):
self.deterministic = True
def disable_deterministic(self):
self.deterministic = False
def forward(
self,
audio: torch.Tensor,
cond: torch.Tensor,
v_cond: torch.Tensor,
attn_mask: torch.Tensor,
vec: torch.Tensor,
freqs_cis: tuple = None,
v_freqs_cis: tuple = None,
sync_vec: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# Get modulation parameters
if sync_vec is not None:
assert sync_vec.ndim == 3
(audio_mod1_shift, audio_mod1_scale, audio_mod1_gate,
audio_mod2_shift, audio_mod2_scale, audio_mod2_gate,
audio_mod3_shift, audio_mod3_scale, audio_mod3_gate,
) = self.audio_mod(sync_vec).chunk(9, dim=-1)
else:
(audio_mod1_shift, audio_mod1_scale, audio_mod1_gate,
audio_mod2_shift, audio_mod2_scale, audio_mod2_gate,
audio_mod3_shift, audio_mod3_scale, audio_mod3_gate,
) = self.audio_mod(vec).chunk(9, dim=-1)
(
v_cond_mod1_shift,
v_cond_mod1_scale,
v_cond_mod1_gate,
v_cond_mod2_shift,
v_cond_mod2_scale,
v_cond_mod2_gate,
v_cond_mod3_shift,
v_cond_mod3_scale,
v_cond_mod3_gate,
) = self.v_cond_mod(vec).chunk(9, dim=-1)
# 1. Self Attention for audio + visual
audio_modulated = self.audio_norm1(audio)
audio_modulated = modulate(audio_modulated, shift=audio_mod1_shift, scale=audio_mod1_scale)
audio_qkv = self.audio_self_attn_qkv(audio_modulated)
audio_q, audio_k, audio_v = rearrange(audio_qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
audio_q = self.audio_self_q_norm(audio_q).to(audio_v)
audio_k = self.audio_self_k_norm(audio_k).to(audio_v)
# Prepare visual cond for attention
v_cond_modulated = self.v_cond_norm1(v_cond)
v_cond_modulated = modulate(v_cond_modulated, shift=v_cond_mod1_shift, scale=v_cond_mod1_scale)
v_cond_qkv = self.v_cond_attn_qkv(v_cond_modulated)
v_cond_q, v_cond_k, v_cond_v = rearrange(v_cond_qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
v_cond_q = self.v_cond_attn_q_norm(v_cond_q).to(v_cond_v)
v_cond_k = self.v_cond_attn_k_norm(v_cond_k).to(v_cond_v)
# Apply RoPE if needed for audio and visual
if freqs_cis is not None:
if not self.interleaved_audio_visual_rope:
audio_qq, audio_kk = apply_rotary_emb(audio_q, audio_k, freqs_cis, head_first=False)
audio_q, audio_k = audio_qq, audio_kk
else:
ori_audio_len = audio_q.shape[1]
ori_v_con_len = v_cond_q.shape[1]
interleaved_audio_visual_q = interleave_two_sequences(audio_q, v_cond_q)
interleaved_audio_visual_k = interleave_two_sequences(audio_k, v_cond_k)
interleaved_audio_visual_qq, interleaved_audio_visual_kk = apply_rotary_emb(
interleaved_audio_visual_q, interleaved_audio_visual_k, freqs_cis, head_first=False
)
audio_qq, v_cond_qq = decouple_interleaved_two_sequences(
interleaved_audio_visual_qq, ori_audio_len, ori_v_con_len
)
audio_kk, v_cond_kk = decouple_interleaved_two_sequences(
interleaved_audio_visual_kk, ori_audio_len, ori_v_con_len
)
audio_q, audio_k = audio_qq, audio_kk
v_cond_q, v_cond_k = v_cond_qq, v_cond_kk
# Apply RoPE to visual if needed and not interleaved
if v_freqs_cis is not None and not self.interleaved_audio_visual_rope:
v_cond_qq, v_cond_kk = apply_rotary_emb(v_cond_q, v_cond_k, v_freqs_cis, head_first=False)
v_cond_q, v_cond_k = v_cond_qq, v_cond_kk
# Concatenate for self-attention
q = torch.cat((v_cond_q, audio_q), dim=1)
k = torch.cat((v_cond_k, audio_k), dim=1)
v = torch.cat((v_cond_v, audio_v), dim=1)
# Run self-attention
attn = attention(q, k, v, mode=self.attn_mode, attn_mask=attn_mask, deterministic=self.deterministic)
v_cond_attn, audio_attn = torch.split(attn, [v_cond.shape[1], audio.shape[1]], dim=1)
# Apply self-attention output to audio and v_cond
audio = audio + apply_gate(self.audio_self_proj(audio_attn), gate=audio_mod1_gate)
v_cond = v_cond + apply_gate(self.v_cond_self_proj(v_cond_attn), gate=v_cond_mod1_gate)
# 2. Cross Attention: (v_cond, audio) as query, text as key/value
# audio, v_cond modulation
audio_modulated = self.audio_norm2(audio)
audio_modulated = modulate(audio_modulated, shift=audio_mod2_shift, scale=audio_mod2_scale)
v_cond_modulated = self.v_cond_norm2(v_cond)
v_cond_modulated = modulate(v_cond_modulated, shift=v_cond_mod2_shift, scale=v_cond_mod2_scale)
# Prepare audio query
audio_q = self.audio_cross_q(audio_modulated)
audio_q = rearrange(audio_q, "B L (H D) -> B L H D", H=self.num_heads)
audio_q = self.audio_cross_q_norm(audio_q)
# Prepare v_cond query
v_cond_q = self.v_cond_cross_q(v_cond_modulated)
v_cond_q = rearrange(v_cond_q, "B L (H D) -> B L H D", H=self.num_heads)
v_cond_q = self.v_cond_cross_q_norm(v_cond_q)
# Prepare text key/value
text_kv = self.text_cross_kv(cond)
text_k, text_v = rearrange(text_kv, "B L (K H D) -> K B L H D", K=2, H=self.num_heads)
text_k = self.text_cross_k_norm(text_k).to(text_v)
# Apply RoPE to (v_cond, audio) query and text key if needed
head_dim = self.hidden_size // self.num_heads
audio_cross_freqs_cos, audio_cross_freqs_sin = self.build_rope_for_text(audio_q.shape[1], head_dim, rope_dim_list=self.rope_dim_list)
audio_cross_freqs_cis = (audio_cross_freqs_cos.to(audio_q.device), audio_cross_freqs_sin.to(audio_q.device))
audio_q = apply_rotary_emb(audio_q, audio_q, audio_cross_freqs_cis, head_first=False)[0]
v_cond_cross_freqs_cos, v_cond_cross_freqs_sin = self.build_rope_for_text(v_cond_q.shape[1], head_dim, rope_dim_list=self.rope_dim_list)
v_cond_cross_freqs_cis = (v_cond_cross_freqs_cos.to(v_cond_q.device), v_cond_cross_freqs_sin.to(v_cond_q.device))
v_cond_q = apply_rotary_emb(v_cond_q, v_cond_q, v_cond_cross_freqs_cis, head_first=False)[0]
text_len = text_k.shape[1]
text_freqs_cos, text_freqs_sin = self.build_rope_for_text(text_len, head_dim,
rope_dim_list=self.rope_dim_list)
text_freqs_cis = (text_freqs_cos.to(text_k.device), text_freqs_sin.to(text_k.device))
text_k = apply_rotary_emb(text_k, text_k, text_freqs_cis, head_first=False)[1]
# Concat v_cond and audio for cross-attention
v_cond_audio_q = torch.cat([v_cond_q, audio_q], dim=1)
# Run cross-attention
cross_attn = attention(v_cond_audio_q, text_k, text_v, mode=self.attn_mode, deterministic=self.deterministic)
v_cond_cross_attn, audio_cross_attn = torch.split(cross_attn, [v_cond.shape[1], audio.shape[1]], dim=1)
# Apply cross-attention output
audio = audio + apply_gate(self.audio_cross_proj(audio_cross_attn), gate=audio_mod2_gate)
v_cond = v_cond + apply_gate(self.v_cond_cross_proj(v_cond_cross_attn), gate=v_cond_mod2_gate)
# 3. Apply MLPs
audio = audio + apply_gate(
self.audio_mlp(modulate(self.audio_norm3(audio), shift=audio_mod3_shift, scale=audio_mod3_scale)),
gate=audio_mod3_gate,
)
# Apply visual MLP
v_cond = v_cond + apply_gate(
self.v_cond_mlp(modulate(self.v_cond_norm3(v_cond), shift=v_cond_mod3_shift, scale=v_cond_mod3_scale)),
gate=v_cond_mod3_gate,
)
return audio, cond, v_cond
class SingleStreamBlock(nn.Module):
def __init__(self, hidden_size: int,
num_heads: int,
mlp_ratio: float,
qk_norm_type: str = "rms",
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.modulation = ModulateDiT(
hidden_size=hidden_size,
factor=6,
act_layer=get_activation_layer("silu"),
**factory_kwargs,
)
self.linear_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=True)
self.linear1 = ChannelLastConv1d(hidden_size, hidden_size, kernel_size=3, padding=1, **factory_kwargs)
self.linear2 = ConvMLP(hidden_size, hidden_size * mlp_ratio, kernel_size=3, padding=1, **factory_kwargs)
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False)
self.q_norm = nn.RMSNorm(hidden_size // num_heads)
self.k_norm = nn.RMSNorm(hidden_size // num_heads)
self.rearrange = Rearrange("B L (H D K) -> B H L D K", K=3, H=num_heads)
def forward(self, x: torch.Tensor, cond: torch.Tensor,freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None):
assert cond.ndim == 3, "Condition should be in shape of [B, T, D]"
modulation = self.modulation(cond)
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = modulation.chunk(6, dim=-1)
x_norm1 = self.norm1(x) * (1 + scale_msa) + shift_msa
qkv = self.linear_qkv(x_norm1)
q, k, v = self.rearrange(qkv).chunk(3, dim=-1)
q = q.squeeze(-1)
k = k.squeeze(-1)
v = v.squeeze(-1)
q = self.q_norm(q)
k = self.k_norm(k)
q, k = apply_rotary_emb(q, k, freqs_cis, head_first=True)
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
out = F.scaled_dot_product_attention(q, k, v)
out = rearrange(out, 'b h n d -> b n (h d)').contiguous()
x = x + apply_gate(self.linear1(out),gate=gate_msa)
x_norm = self.norm2(x) * (1 + scale_mlp) + shift_mlp
x = x + apply_gate(self.linear2(x_norm), gate=gate_mlp)
return x
class HunyuanVideoFoley(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
model_config,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
model_args = model_config.model_config.model_kwargs
self.depth_triple_blocks = model_args.get("depth_triple_blocks", 19)
self.depth_single_blocks = model_args.get("depth_single_blocks", 38)
# Gradient checkpoint.
self.gradient_checkpoint = False
self.gradient_checkpoint_layers = None
if self.gradient_checkpoint:
assert self.gradient_checkpoint_layers <= self.depth_triple_blocks + self.depth_single_blocks, (
f"Gradient checkpoint layers must be less or equal than the depth of the model. "
f"Got gradient_checkpoint_layers={self.gradient_checkpoint_layers} and depth={self.depth_triple_blocks + self.depth_single_blocks}."
)
self.interleaved_audio_visual_rope = model_args.get("interleaved_audio_visual_rope", False)
# Condition projection. Default to linear projection.
self.condition_projection = model_args.get("condition_projection", "linear")
self.condition_dim = model_args.get("condition_dim", None)
self.use_attention_mask = model_args.get("use_attention_mask", False)
self.patch_size = model_args.get("patch_size", 1)
self.visual_in_channels = model_args.get("clip_dim", 768)
self.audio_vae_latent_dim = model_args.get("audio_vae_latent_dim", 128)
self.out_channels = self.audio_vae_latent_dim
self.unpatchify_channels = self.out_channels
self.reverse = model_args.get("reverse", False)
self.num_heads = model_args.get("num_heads", 24)
self.hidden_size = model_args.get("hidden_size", 3072)
self.rope_dim_list = model_args.get("rope_dim_list", None)
self.mlp_ratio = model_args.get("mlp_ratio", 4.0)
self.mlp_act_type = model_args.get("mlp_act_type", "gelu_tanh")
self.qkv_bias = model_args.get("qkv_bias", True)
self.qk_norm = model_args.get("qk_norm", True)
self.qk_norm_type = model_args.get("qk_norm_type", "rms")
self.attn_mode = model_args.get("attn_mode", "torch")
self.embedder_type = model_args.get("embedder_type", "default")
# sync condition things
self.sync_modulation = model_args.get("sync_modulation", False)
self.add_sync_feat_to_audio = model_args.get("add_sync_feat_to_audio", False)
self.sync_feat_dim = model_args.get("sync_feat_dim", 768)
self.sync_in_ksz = model_args.get("sync_in_ksz", 1)
# condition tokens length
self.clip_len = model_args.get("clip_length", 64)
self.sync_len = model_args.get("sync_length", 192)
if self.hidden_size % self.num_heads != 0:
raise ValueError(f"Hidden size {self.hidden_size} must be divisible by num_heads {self.num_heads}")
# Build audio patchify layer and visual gated linear projection
self.patch_size = 1
self.audio_embedder = PatchEmbed1D(self.patch_size, self.audio_vae_latent_dim, self.hidden_size, **factory_kwargs)
self.visual_proj = SwiGLU(self.visual_in_channels, hidden_dim=self.hidden_size, out_dim=self.hidden_size)
# condition
if self.condition_projection == "linear":
self.cond_in = ConditionProjection(
self.condition_dim, self.hidden_size, get_activation_layer("silu"), **factory_kwargs
)
else:
raise NotImplementedError(f"Unsupported condition_projection: {self.condition_projection}")
# time modulation
self.time_in = TimestepEmbedder(self.hidden_size, get_activation_layer("silu"), **factory_kwargs)
# visual sync embedder if needed
if self.sync_in_ksz == 1:
sync_in_padding = 0
elif self.sync_in_ksz == 3:
sync_in_padding = 1
else:
raise ValueError
if self.sync_modulation or self.add_sync_feat_to_audio:
self.sync_in = nn.Sequential(
nn.Linear(self.sync_feat_dim, self.hidden_size),
nn.SiLU(),
ConvMLP(self.hidden_size, self.hidden_size * 4, kernel_size=self.sync_in_ksz, padding=sync_in_padding),
)
self.sync_pos_emb = nn.Parameter(torch.zeros((1, 1, 8, self.sync_feat_dim)))
self.triple_blocks = nn.ModuleList(
[
TwoStreamCABlock(
hidden_size=self.hidden_size,
num_heads=self.num_heads,
mlp_ratio=self.mlp_ratio,
mlp_act_type=self.mlp_act_type,
qk_norm=self.qk_norm,
qk_norm_type=self.qk_norm_type,
qkv_bias=self.qkv_bias,
attn_mode=self.attn_mode,
reverse=self.reverse,
interleaved_audio_visual_rope=self.interleaved_audio_visual_rope,
**factory_kwargs,
)
for _ in range(self.depth_triple_blocks)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(
hidden_size=self.hidden_size,
num_heads=self.num_heads,
mlp_ratio=self.mlp_ratio,
qk_norm_type=self.qk_norm_type,
**factory_kwargs,
)
for _ in range(self.depth_single_blocks)
]
)
self.final_layer = FinalLayer1D(
self.hidden_size, self.patch_size, self.out_channels, get_activation_layer("silu"), **factory_kwargs
)
self.unpatchify_channels = self.out_channels
self.empty_clip_feat = nn.Parameter(torch.zeros(1, self.visual_in_channels), requires_grad=True)
self.empty_sync_feat = nn.Parameter(torch.zeros(1, self.sync_feat_dim), requires_grad=True)
nn.init.constant_(self.empty_clip_feat, 0)
nn.init.constant_(self.empty_sync_feat, 0)
def get_empty_string_sequence(self, bs=None) -> torch.Tensor:
if bs is None:
return self.empty_string_feat
else:
return self.empty_string_feat.unsqueeze(0).expand(bs, -1, -1)
def get_empty_clip_sequence(self, bs=None, len=None) -> torch.Tensor:
len = len if len is not None else self.clip_len
if bs is None:
return self.empty_clip_feat.expand(len, -1) # 15s
else:
return self.empty_clip_feat.unsqueeze(0).expand(bs, len, -1) # 15s
def get_empty_sync_sequence(self, bs=None, len=None) -> torch.Tensor:
len = len if len is not None else self.sync_len
if bs is None:
return self.empty_sync_feat.expand(len, -1)
else:
return self.empty_sync_feat.unsqueeze(0).expand(bs, len, -1)
def build_rope_for_audio_visual(self, audio_emb_len, visual_cond_len):
assert self.patch_size == 1
# ======================================== Build RoPE for audio tokens ======================================
target_ndim = 1 # n-d RoPE
rope_sizes = [audio_emb_len]
head_dim = self.hidden_size // self.num_heads
rope_dim_list = self.rope_dim_list
if rope_dim_list is None:
rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) should equal to head_dim of attention layer"
freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
rope_dim_list=rope_dim_list,
start=rope_sizes,
theta=10000,
use_real=True,
theta_rescale_factor=1.0,
)
# ========================== Build RoPE for clip tokens =========================
target_ndim = 1 # n-d RoPE
rope_sizes = [visual_cond_len]
head_dim = self.hidden_size // self.num_heads
rope_dim_list = self.rope_dim_list
if rope_dim_list is None:
rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) should equal to head_dim of attention layer"
v_freqs_cos, v_freqs_sin = get_nd_rotary_pos_embed(
rope_dim_list=rope_dim_list,
start=rope_sizes,
theta=10000,
use_real=True,
theta_rescale_factor=1.0,
freq_scaling=1.0 * audio_emb_len / visual_cond_len,
)
return freqs_cos, freqs_sin, v_freqs_cos, v_freqs_sin
def build_rope_for_interleaved_audio_visual(self, total_len):
assert self.patch_size == 1
# ========================== Build RoPE for audio tokens ========================
target_ndim = 1 # n-d RoPE
rope_sizes = [total_len]
head_dim = self.hidden_size // self.num_heads
rope_dim_list = self.rope_dim_list
if rope_dim_list is None:
rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) should equal to head_dim of attention layer"
freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
rope_dim_list=rope_dim_list,
start=rope_sizes,
theta=10000,
use_real=True,
theta_rescale_factor=1.0,
)
return freqs_cos, freqs_sin
def set_attn_mode(self, new_mode):
for block in self.triple_blocks:
block.set_attn_mode(new_mode)
for block in self.single_blocks:
block.set_attn_mode(new_mode)
def enable_deterministic(self):
for block in self.triple_blocks:
block.enable_deterministic()
for block in self.single_blocks:
block.enable_deterministic()
def disable_deterministic(self):
for block in self.triple_blocks:
block.disable_deterministic()
for block in self.single_blocks:
block.disable_deterministic()
def forward(
self,
x: torch.Tensor,
t: torch.Tensor, # Should be in range(0, 1000).
clip_feat: Optional[torch.Tensor] = None,
cond: torch.Tensor = None,
audio_mask: Optional[torch.Tensor] = None,
cond_mask: torch.Tensor = None,
sync_feat: Optional[torch.Tensor] = None,
drop_visual: Optional[List[bool]] = None,
return_dict: bool = True,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
out = {}
audio = x
bs, _, ol = x.shape
tl = ol // self.patch_size
# Prepare learnable empty conditions for visual condition
if drop_visual is not None:
clip_feat[drop_visual] = self.get_empty_clip_sequence().to(dtype=clip_feat.dtype)
sync_feat[drop_visual] = self.get_empty_sync_sequence().to(dtype=sync_feat.dtype)
# ========================= Prepare time & visual modulation =========================
vec = self.time_in(t)
sync_vec = None
if self.sync_modulation:
assert sync_feat is not None and sync_feat.shape[1] % 8 == 0
sync_feat = sync_feat.view(bs, int(sync_feat.shape[1] / 8), 8, self.sync_feat_dim) + self.sync_pos_emb
sync_feat = sync_feat.view(bs, -1, self.sync_feat_dim) # bs, num_segments * 8, channels
sync_vec = self.sync_in(sync_feat) # bs, num_segments * 8, c
sync_vec = (
F.interpolate(sync_vec.transpose(1, 2), size=(tl), mode="nearest-exact").contiguous().transpose(1, 2)
) # bs, tl, c
sync_vec = sync_vec + vec.unsqueeze(1)
elif self.add_sync_feat_to_audio:
assert sync_feat is not None and sync_feat.shape[1] % 8 == 0
sync_feat = sync_feat.view(bs, sync_feat.shape[1] // 8, 8, self.sync_feat_dim) + self.sync_pos_emb
sync_feat = sync_feat.view(bs, -1, self.sync_feat_dim) # bs, num_segments * 8, channels
sync_feat = self.sync_in(sync_feat) # bs, num_segments * 8, c
add_sync_feat_to_audio = (
F.interpolate(sync_feat.transpose(1, 2), size=(tl), mode="nearest-exact").contiguous().transpose(1, 2)
) # bs, tl, c
# ========================= Get text, audio and video clip embedding =========================
cond = self.cond_in(cond)
cond_seq_len = cond.shape[1]
audio = self.audio_embedder(x)
audio_seq_len = audio.shape[1]
v_cond = self.visual_proj(clip_feat)
v_cond_seq_len = v_cond.shape[1]
# ========================= Compute attention mask =========================
attn_mask = None
if self.use_attention_mask:
assert cond_mask is not None
batch_size = audio.shape[0]
seq_len = cond_seq_len + v_cond_seq_len + audio_seq_len
# get default audio_mask and v_cond_mask
audio_mask = torch.ones((batch_size, audio_seq_len), dtype=torch.bool, device=audio.device)
v_cond_mask = torch.ones((batch_size, v_cond_seq_len), dtype=torch.bool, device=audio.device)
# batch_size x seq_len
concat_mask = torch.cat([cond_mask, v_cond_mask, audio_mask], dim=1)
# batch_size x 1 x seq_len x seq_len
attn_mask_1 = concat_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
# batch_size x 1 x seq_len x seq_len
attn_mask_2 = attn_mask_1.transpose(2, 3)
# batch_size x 1 x seq_len x seq_len, 1 for broadcasting of num_heads
attn_mask = (attn_mask_1 & attn_mask_2).bool()
# avoids self-attention weight being NaN for text padding tokens
attn_mask[:, :, :, 0] = True
# ========================= Build rope for audio and clip tokens =========================
if self.interleaved_audio_visual_rope:
freqs_cos, freqs_sin = self.build_rope_for_interleaved_audio_visual(audio_seq_len * 2)
v_freqs_cos = v_freqs_sin = None
else:
freqs_cos, freqs_sin, v_freqs_cos, v_freqs_sin = self.build_rope_for_audio_visual(
audio_seq_len, v_cond_seq_len
)
# ========================= Pass through DiT blocks =========================
freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None
v_freqs_cis = (v_freqs_cos, v_freqs_sin) if v_freqs_cos is not None else None
if self.add_sync_feat_to_audio:
add_sync_layer = 0
assert (
add_sync_layer < self.depth_triple_blocks
), f"The layer to add mel_spectrogram feature and sync feature should in the triple_stream_blocks (n: {self.depth_triple_blocks})."
# Triple-stream blocks
for layer_num, block in enumerate(self.triple_blocks):
if self.add_sync_feat_to_audio and layer_num == add_sync_layer:
audio = audio + add_sync_feat_to_audio
triple_block_args = [audio, cond, v_cond, attn_mask, vec, freqs_cis, v_freqs_cis, sync_vec]
if (
self.training
and self.gradient_checkpoint
and (self.gradient_checkpoint_layers == -1 or layer_num < self.gradient_checkpoint_layers)
):
audio, cond, v_cond = torch.utils.checkpoint.checkpoint(
ckpt_wrapper(block), *triple_block_args, use_reentrant=False
)
else:
audio, cond, v_cond = block(*triple_block_args)
x = audio
if sync_vec is not None:
vec = vec.unsqueeze(1).repeat(1, cond_seq_len + v_cond_seq_len, 1)
vec = torch.cat((vec, sync_vec), dim=1)
freqs_cos, freqs_sin, _, _ = self.build_rope_for_audio_visual(audio_seq_len, v_cond_seq_len)
if self.add_sync_feat_to_audio:
vec = add_sync_feat_to_audio + vec.unsqueeze(dim=1)
if len(self.single_blocks) > 0:
for layer_num, block in enumerate(self.single_blocks):
single_block_args = [
x,
vec,
(freqs_cos, freqs_sin),
]
if (
self.training
and self.gradient_checkpoint
and (
self.gradient_checkpoint_layers == -1
or layer_num + len(self.triple_blocks) < self.gradient_checkpoint_layers
)
):
x = torch.utils.checkpoint.checkpoint(ckpt_wrapper(block), *single_block_args, use_reentrant=False)
else:
x = block(*single_block_args)
audio = x
# ========================= Final layer =========================
if sync_vec is not None:
vec = sync_vec
audio = self.final_layer(audio, vec) # (N, T, patch_size * out_channels)
audio = self.unpatchify1d(audio, tl)
if return_dict:
out["x"] = audio
return out
return audio
def unpatchify1d(self, x, l):
# x: (N, L, patch_size * C)
# audio: (N, C, T), T == L * patch_size
c = self.unpatchify_channels
p = self.patch_size
assert l == x.shape[1]
x = x.reshape(shape=(x.shape[0], l, p, c))
x = torch.einsum("ntpc->nctp", x)
audio = x.reshape(shape=(x.shape[0], c, l * p))
return audio
def params_count(self):
counts = {
"triple": sum(
[
sum(p.numel() for p in block.audio_cross_q.parameters())
+ sum(p.numel() for p in block.v_cond_cross_q.parameters())
+ sum(p.numel() for p in block.text_cross_kv.parameters())
+ sum(p.numel() for p in block.audio_self_attn_qkv.parameters())
+ sum(p.numel() for p in block.v_cond_attn_qkv.parameters())
+ sum(p.numel() for p in block.audio_mlp.parameters())
+ sum(p.numel() for p in block.audio_self_proj.parameters())
+ sum(p.numel() for p in block.v_cond_self_proj.parameters())
+ sum(p.numel() for p in block.v_cond_mlp.parameters())
for block in self.triple_blocks
]
),
"single": sum(
[
sum(p.numel() for p in block.linear1.parameters())
+ sum(p.numel() for p in block.linear2.parameters())
for block in self.single_blocks
]
),
"total": sum(p.numel() for p in self.parameters()),
}
counts["attn+mlp"] = counts["triple"] + counts["single"]
return counts
|