File size: 36,733 Bytes
9867d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
from typing import List, Tuple, Optional, Union, Dict

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from einops.layers.torch import Rearrange
from diffusers.models import ModelMixin
from diffusers.configuration_utils import ConfigMixin, register_to_config

from .nn.activation_layers import SwiGLU, get_activation_layer
from .nn.attn_layers import apply_rotary_emb, attention
from .nn.embed_layers import TimestepEmbedder, ConditionProjection, PatchEmbed1D
from .nn.mlp_layers import MLP, ConvMLP, FinalLayer1D, ChannelLastConv1d
from .nn.modulate_layers import ModulateDiT, ckpt_wrapper, apply_gate, modulate
from .nn.norm_layers import get_norm_layer
from .nn.posemb_layers import get_nd_rotary_pos_embed

def interleave_two_sequences(x1: torch.Tensor, x2: torch.Tensor):
    # [B, N1, H, C] & [B, N2, H, C]
    B, N1, H, C = x1.shape
    B, N2, H, C = x2.shape
    assert x1.ndim == x2.ndim == 4

    if N1 != N2:
        x2 = x2.view(B, N2, -1).transpose(1, 2)
        x2 = F.interpolate(x2, size=(N1), mode="nearest-exact")
        x2 = x2.transpose(1, 2).view(B, N1, H, C)
    x = torch.stack((x1, x2), dim=2)
    x = x.reshape(B, N1 * 2, H, C)
    return x

def decouple_interleaved_two_sequences(x: torch.Tensor, len1: int, len2: int):
    B, N, H, C = x.shape
    assert N % 2 == 0 and N // 2 == len1

    x = x.reshape(B, -1, 2, H, C)
    x1 = x[:, :, 0]
    x2 = x[:, :, 1]
    if x2.shape[1] != len2:
        x2 = x2.view(B, len1, H * C).transpose(1, 2)
        x2 = F.interpolate(x2, size=(len2), mode="nearest-exact")
        x2 = x2.transpose(1, 2).view(B, len2, H, C)
    return x1, x2

class TwoStreamCABlock(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        mlp_ratio: float,
        mlp_act_type: str = "gelu_tanh",
        qk_norm: bool = True,
        qk_norm_type: str = "rms",
        qkv_bias: bool = False,
        attn_mode: str = "torch",
        reverse: bool = False,
        interleaved_audio_visual_rope: bool = False,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()

        self.deterministic = False
        self.reverse = reverse
        self.attn_mode = attn_mode
        self.num_heads = num_heads
        self.hidden_size = hidden_size
        head_dim = hidden_size // num_heads
        mlp_hidden_dim = int(hidden_size * mlp_ratio)

        self.interleaved_audio_visual_rope = interleaved_audio_visual_rope

        # Self attention for audio + visual
        self.audio_mod = ModulateDiT(hidden_size, factor=9, act_layer=get_activation_layer("silu"), **factory_kwargs)
        self.audio_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
        self.audio_self_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
        qk_norm_layer = get_norm_layer(qk_norm_type)
        self.audio_self_q_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
        )
        self.audio_self_k_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
        )
        self.audio_self_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)

        # visual cond
        self.v_cond_mod = ModulateDiT(hidden_size, factor=9, act_layer=get_activation_layer("silu"), **factory_kwargs)
        self.v_cond_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
        self.v_cond_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
        self.v_cond_attn_q_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
        )
        self.v_cond_attn_k_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
        )
        self.v_cond_self_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)

        self.max_text_len = 100
        self.rope_dim_list = None
        
        # audio and video norm for cross attention with text
        self.audio_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
        self.v_cond_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)

        # Cross attention: (video_audio) as query, text as key/value
        self.audio_cross_q = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
        self.v_cond_cross_q = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
        self.text_cross_kv = nn.Linear(hidden_size, hidden_size * 2, bias=qkv_bias, **factory_kwargs)
        
        self.audio_cross_q_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
        )
        self.v_cond_cross_q_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
        )
        self.text_cross_k_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
        )
        self.audio_cross_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
        self.v_cond_cross_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)

        # MLPs
        self.audio_norm3 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
        self.audio_mlp = MLP(
            hidden_size, mlp_hidden_dim, act_layer=get_activation_layer(mlp_act_type), bias=True, **factory_kwargs
        )

        self.v_cond_norm3 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
        self.v_cond_mlp = MLP(
            hidden_size, mlp_hidden_dim, act_layer=get_activation_layer(mlp_act_type), bias=True, **factory_kwargs
        )

    def build_rope_for_text(self, text_len, head_dim, rope_dim_list=None):
        target_ndim = 1  # n-d RoPE
        rope_sizes = [text_len]
        
        if rope_dim_list is None:
            rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
        assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) should equal to head_dim of attention layer"
        
        text_freqs_cos, text_freqs_sin = get_nd_rotary_pos_embed(
            rope_dim_list=rope_dim_list,
            start=rope_sizes,
            theta=10000,
            use_real=True,
            theta_rescale_factor=1.0,
        )
        return text_freqs_cos, text_freqs_sin

    def set_attn_mode(self, new_mode):
        if new_mode != "torch":
            raise NotImplementedError(f"Only support 'torch' mode, got {new_mode}.")
        self.attn_mode = new_mode

    def enable_deterministic(self):
        self.deterministic = True

    def disable_deterministic(self):
        self.deterministic = False

    def forward(
        self,
        audio: torch.Tensor,
        cond: torch.Tensor,
        v_cond: torch.Tensor,
        attn_mask: torch.Tensor,
        vec: torch.Tensor,
        freqs_cis: tuple = None,
        v_freqs_cis: tuple = None,
        sync_vec: torch.Tensor = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        # Get modulation parameters
        if sync_vec is not None:
            assert sync_vec.ndim == 3
            (audio_mod1_shift, audio_mod1_scale, audio_mod1_gate, 
             audio_mod2_shift, audio_mod2_scale, audio_mod2_gate, 
             audio_mod3_shift, audio_mod3_scale, audio_mod3_gate,
            ) = self.audio_mod(sync_vec).chunk(9, dim=-1)
        else:
            (audio_mod1_shift, audio_mod1_scale, audio_mod1_gate, 
             audio_mod2_shift, audio_mod2_scale, audio_mod2_gate,
             audio_mod3_shift, audio_mod3_scale, audio_mod3_gate,
            ) = self.audio_mod(vec).chunk(9, dim=-1)

        (
            v_cond_mod1_shift,
            v_cond_mod1_scale,
            v_cond_mod1_gate,
            v_cond_mod2_shift,
            v_cond_mod2_scale,
            v_cond_mod2_gate,
            v_cond_mod3_shift,
            v_cond_mod3_scale,
            v_cond_mod3_gate,
        ) = self.v_cond_mod(vec).chunk(9, dim=-1)
        
        # 1. Self Attention for audio + visual
        audio_modulated = self.audio_norm1(audio)
        audio_modulated = modulate(audio_modulated, shift=audio_mod1_shift, scale=audio_mod1_scale)
        audio_qkv = self.audio_self_attn_qkv(audio_modulated)
        audio_q, audio_k, audio_v = rearrange(audio_qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
        audio_q = self.audio_self_q_norm(audio_q).to(audio_v)
        audio_k = self.audio_self_k_norm(audio_k).to(audio_v)
        
        # Prepare visual cond for attention
        v_cond_modulated = self.v_cond_norm1(v_cond)
        v_cond_modulated = modulate(v_cond_modulated, shift=v_cond_mod1_shift, scale=v_cond_mod1_scale)
        v_cond_qkv = self.v_cond_attn_qkv(v_cond_modulated)
        v_cond_q, v_cond_k, v_cond_v = rearrange(v_cond_qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
        v_cond_q = self.v_cond_attn_q_norm(v_cond_q).to(v_cond_v)
        v_cond_k = self.v_cond_attn_k_norm(v_cond_k).to(v_cond_v)
        
        # Apply RoPE if needed for audio and visual
        if freqs_cis is not None:
            if not self.interleaved_audio_visual_rope:
                audio_qq, audio_kk = apply_rotary_emb(audio_q, audio_k, freqs_cis, head_first=False)
                audio_q, audio_k = audio_qq, audio_kk
            else:
                ori_audio_len = audio_q.shape[1]
                ori_v_con_len = v_cond_q.shape[1]
                interleaved_audio_visual_q = interleave_two_sequences(audio_q, v_cond_q)
                interleaved_audio_visual_k = interleave_two_sequences(audio_k, v_cond_k)
                interleaved_audio_visual_qq, interleaved_audio_visual_kk = apply_rotary_emb(
                    interleaved_audio_visual_q, interleaved_audio_visual_k, freqs_cis, head_first=False
                )
                audio_qq, v_cond_qq = decouple_interleaved_two_sequences(
                    interleaved_audio_visual_qq, ori_audio_len, ori_v_con_len
                )
                audio_kk, v_cond_kk = decouple_interleaved_two_sequences(
                    interleaved_audio_visual_kk, ori_audio_len, ori_v_con_len
                )
                audio_q, audio_k = audio_qq, audio_kk
                v_cond_q, v_cond_k = v_cond_qq, v_cond_kk

        # Apply RoPE to visual if needed and not interleaved
        if v_freqs_cis is not None and not self.interleaved_audio_visual_rope:
            v_cond_qq, v_cond_kk = apply_rotary_emb(v_cond_q, v_cond_k, v_freqs_cis, head_first=False)
            v_cond_q, v_cond_k = v_cond_qq, v_cond_kk
        
        # Concatenate for self-attention
        q = torch.cat((v_cond_q, audio_q), dim=1)
        k = torch.cat((v_cond_k, audio_k), dim=1)
        v = torch.cat((v_cond_v, audio_v), dim=1)
        
        # Run self-attention
        attn = attention(q, k, v, mode=self.attn_mode, attn_mask=attn_mask, deterministic=self.deterministic)
        v_cond_attn, audio_attn = torch.split(attn, [v_cond.shape[1], audio.shape[1]], dim=1)
        
        # Apply self-attention output to audio and v_cond
        audio = audio + apply_gate(self.audio_self_proj(audio_attn), gate=audio_mod1_gate)
        v_cond = v_cond + apply_gate(self.v_cond_self_proj(v_cond_attn), gate=v_cond_mod1_gate)

        # 2. Cross Attention: (v_cond, audio) as query, text as key/value
        # audio, v_cond modulation
        audio_modulated = self.audio_norm2(audio)
        audio_modulated = modulate(audio_modulated, shift=audio_mod2_shift, scale=audio_mod2_scale)
        v_cond_modulated = self.v_cond_norm2(v_cond)
        v_cond_modulated = modulate(v_cond_modulated, shift=v_cond_mod2_shift, scale=v_cond_mod2_scale)

        # Prepare audio query
        audio_q = self.audio_cross_q(audio_modulated)
        audio_q = rearrange(audio_q, "B L (H D) -> B L H D", H=self.num_heads)
        audio_q = self.audio_cross_q_norm(audio_q)
        
        # Prepare v_cond query
        v_cond_q = self.v_cond_cross_q(v_cond_modulated)
        v_cond_q = rearrange(v_cond_q, "B L (H D) -> B L H D", H=self.num_heads)
        v_cond_q = self.v_cond_cross_q_norm(v_cond_q)

        # Prepare text key/value
        text_kv = self.text_cross_kv(cond)
        text_k, text_v = rearrange(text_kv, "B L (K H D) -> K B L H D", K=2, H=self.num_heads)
        text_k = self.text_cross_k_norm(text_k).to(text_v)
        
        # Apply RoPE to (v_cond, audio) query and text key if needed
        head_dim = self.hidden_size // self.num_heads
        audio_cross_freqs_cos, audio_cross_freqs_sin = self.build_rope_for_text(audio_q.shape[1], head_dim, rope_dim_list=self.rope_dim_list)
        audio_cross_freqs_cis = (audio_cross_freqs_cos.to(audio_q.device), audio_cross_freqs_sin.to(audio_q.device))
        audio_q = apply_rotary_emb(audio_q, audio_q, audio_cross_freqs_cis, head_first=False)[0]
        
        v_cond_cross_freqs_cos, v_cond_cross_freqs_sin = self.build_rope_for_text(v_cond_q.shape[1], head_dim, rope_dim_list=self.rope_dim_list)
        v_cond_cross_freqs_cis = (v_cond_cross_freqs_cos.to(v_cond_q.device), v_cond_cross_freqs_sin.to(v_cond_q.device))
        v_cond_q = apply_rotary_emb(v_cond_q, v_cond_q, v_cond_cross_freqs_cis, head_first=False)[0]

        text_len = text_k.shape[1]
        
        text_freqs_cos, text_freqs_sin = self.build_rope_for_text(text_len, head_dim, 
                                                                 rope_dim_list=self.rope_dim_list)
        text_freqs_cis = (text_freqs_cos.to(text_k.device), text_freqs_sin.to(text_k.device))
        text_k = apply_rotary_emb(text_k, text_k, text_freqs_cis, head_first=False)[1]
        
        # Concat v_cond and audio for cross-attention  
        v_cond_audio_q = torch.cat([v_cond_q, audio_q], dim=1)

        # Run cross-attention
        cross_attn = attention(v_cond_audio_q, text_k, text_v, mode=self.attn_mode, deterministic=self.deterministic)
        v_cond_cross_attn, audio_cross_attn = torch.split(cross_attn, [v_cond.shape[1], audio.shape[1]], dim=1)
        
        # Apply cross-attention output
        audio = audio + apply_gate(self.audio_cross_proj(audio_cross_attn), gate=audio_mod2_gate)
        v_cond = v_cond + apply_gate(self.v_cond_cross_proj(v_cond_cross_attn), gate=v_cond_mod2_gate)

        # 3. Apply MLPs
        audio = audio + apply_gate(
            self.audio_mlp(modulate(self.audio_norm3(audio), shift=audio_mod3_shift, scale=audio_mod3_scale)),
            gate=audio_mod3_gate,
        )
        
        # Apply visual MLP
        v_cond = v_cond + apply_gate(
            self.v_cond_mlp(modulate(self.v_cond_norm3(v_cond), shift=v_cond_mod3_shift, scale=v_cond_mod3_scale)),
            gate=v_cond_mod3_gate,
        )

        return audio, cond, v_cond

class SingleStreamBlock(nn.Module):

    def __init__(self, hidden_size: int,
                    num_heads: int,
                    mlp_ratio: float,
                    qk_norm_type: str = "rms",
                    dtype: Optional[torch.dtype] = None,
                    device: Optional[torch.device] = None,):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()

        self.hidden_size = hidden_size
        self.num_heads = num_heads

        self.modulation = ModulateDiT(
            hidden_size=hidden_size,
            factor=6,
            act_layer=get_activation_layer("silu"),
            **factory_kwargs,
        )
        self.linear_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=True)
        self.linear1 = ChannelLastConv1d(hidden_size, hidden_size, kernel_size=3, padding=1, **factory_kwargs)
        self.linear2 = ConvMLP(hidden_size, hidden_size * mlp_ratio, kernel_size=3, padding=1, **factory_kwargs)
        self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False)
        self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False)
        self.q_norm = nn.RMSNorm(hidden_size // num_heads)
        self.k_norm = nn.RMSNorm(hidden_size // num_heads)
        self.rearrange = Rearrange("B L (H D K) -> B H L D K", K=3, H=num_heads)

    def forward(self, x: torch.Tensor, cond: torch.Tensor,freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None):
        assert cond.ndim == 3, "Condition should be in shape of [B, T, D]"
        modulation = self.modulation(cond)
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = modulation.chunk(6, dim=-1)
        x_norm1 = self.norm1(x) * (1 + scale_msa) + shift_msa

        qkv = self.linear_qkv(x_norm1)
        q, k, v = self.rearrange(qkv).chunk(3, dim=-1)
        q = q.squeeze(-1)
        k = k.squeeze(-1)
        v = v.squeeze(-1)

        q = self.q_norm(q)
        k = self.k_norm(k)
        q, k = apply_rotary_emb(q, k, freqs_cis, head_first=True)

        q = q.contiguous()
        k = k.contiguous()
        v = v.contiguous()
        out = F.scaled_dot_product_attention(q, k, v)
        out = rearrange(out, 'b h n d -> b n (h d)').contiguous()

        x = x + apply_gate(self.linear1(out),gate=gate_msa)
        x_norm = self.norm2(x) * (1 + scale_mlp) + shift_mlp
        x = x + apply_gate(self.linear2(x_norm), gate=gate_mlp)

        return x

class HunyuanVideoFoley(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
        self,
        model_config,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()

        model_args = model_config.model_config.model_kwargs
        self.depth_triple_blocks = model_args.get("depth_triple_blocks", 19)
        self.depth_single_blocks = model_args.get("depth_single_blocks", 38)
        # Gradient checkpoint.
        self.gradient_checkpoint = False
        self.gradient_checkpoint_layers = None
        if self.gradient_checkpoint:
            assert self.gradient_checkpoint_layers <= self.depth_triple_blocks + self.depth_single_blocks, (
                f"Gradient checkpoint layers must be less or equal than the depth of the model. "
                f"Got gradient_checkpoint_layers={self.gradient_checkpoint_layers} and depth={self.depth_triple_blocks + self.depth_single_blocks}."
            )

        self.interleaved_audio_visual_rope = model_args.get("interleaved_audio_visual_rope", False)

        # Condition projection. Default to linear projection.
        self.condition_projection = model_args.get("condition_projection", "linear")
        self.condition_dim = model_args.get("condition_dim", None)
        self.use_attention_mask = model_args.get("use_attention_mask", False)

        self.patch_size = model_args.get("patch_size", 1)
        self.visual_in_channels = model_args.get("clip_dim", 768)
        self.audio_vae_latent_dim = model_args.get("audio_vae_latent_dim", 128)
        self.out_channels = self.audio_vae_latent_dim 
        self.unpatchify_channels = self.out_channels
        self.reverse = model_args.get("reverse", False)

        self.num_heads = model_args.get("num_heads", 24)
        self.hidden_size = model_args.get("hidden_size", 3072)
        self.rope_dim_list = model_args.get("rope_dim_list", None)
        self.mlp_ratio = model_args.get("mlp_ratio", 4.0)
        self.mlp_act_type = model_args.get("mlp_act_type", "gelu_tanh")

        self.qkv_bias = model_args.get("qkv_bias", True)
        self.qk_norm = model_args.get("qk_norm", True)
        self.qk_norm_type = model_args.get("qk_norm_type", "rms")
        self.attn_mode = model_args.get("attn_mode", "torch")

        self.embedder_type = model_args.get("embedder_type", "default")

        # sync condition things
        self.sync_modulation = model_args.get("sync_modulation", False)
        self.add_sync_feat_to_audio = model_args.get("add_sync_feat_to_audio", False)
        self.sync_feat_dim = model_args.get("sync_feat_dim", 768)
        self.sync_in_ksz = model_args.get("sync_in_ksz", 1)

        # condition tokens length
        self.clip_len = model_args.get("clip_length", 64)
        self.sync_len = model_args.get("sync_length", 192)

        if self.hidden_size % self.num_heads != 0:
            raise ValueError(f"Hidden size {self.hidden_size} must be divisible by num_heads {self.num_heads}")

        # Build audio patchify layer and visual gated linear projection
        self.patch_size = 1
        self.audio_embedder = PatchEmbed1D(self.patch_size, self.audio_vae_latent_dim, self.hidden_size, **factory_kwargs)
        self.visual_proj = SwiGLU(self.visual_in_channels, hidden_dim=self.hidden_size, out_dim=self.hidden_size)

        # condition
        if self.condition_projection == "linear":
            self.cond_in = ConditionProjection(
                self.condition_dim, self.hidden_size, get_activation_layer("silu"), **factory_kwargs
            )
        else:
            raise NotImplementedError(f"Unsupported condition_projection: {self.condition_projection}")

        # time modulation
        self.time_in = TimestepEmbedder(self.hidden_size, get_activation_layer("silu"), **factory_kwargs)

        # visual sync embedder if needed
        if self.sync_in_ksz == 1:
            sync_in_padding = 0
        elif self.sync_in_ksz == 3:
            sync_in_padding = 1
        else:
            raise ValueError
        if self.sync_modulation or self.add_sync_feat_to_audio:
            self.sync_in = nn.Sequential(
                nn.Linear(self.sync_feat_dim, self.hidden_size),
                nn.SiLU(),
                ConvMLP(self.hidden_size, self.hidden_size * 4, kernel_size=self.sync_in_ksz, padding=sync_in_padding),
            )
            self.sync_pos_emb = nn.Parameter(torch.zeros((1, 1, 8, self.sync_feat_dim)))

        self.triple_blocks = nn.ModuleList(
            [
                TwoStreamCABlock(
                    hidden_size=self.hidden_size,
                    num_heads=self.num_heads,
                    mlp_ratio=self.mlp_ratio,
                    mlp_act_type=self.mlp_act_type,
                    qk_norm=self.qk_norm,
                    qk_norm_type=self.qk_norm_type,
                    qkv_bias=self.qkv_bias,
                    attn_mode=self.attn_mode,
                    reverse=self.reverse,
                    interleaved_audio_visual_rope=self.interleaved_audio_visual_rope,
                    **factory_kwargs,
                )
                for _ in range(self.depth_triple_blocks)
            ]
        )


        self.single_blocks = nn.ModuleList(
            [
                SingleStreamBlock(
                    hidden_size=self.hidden_size,
                    num_heads=self.num_heads,
                    mlp_ratio=self.mlp_ratio,
                    qk_norm_type=self.qk_norm_type,
                    **factory_kwargs,
                )
                for _ in range(self.depth_single_blocks)
            ]
        )

        self.final_layer = FinalLayer1D(
            self.hidden_size, self.patch_size, self.out_channels, get_activation_layer("silu"), **factory_kwargs
        )
        self.unpatchify_channels = self.out_channels

        self.empty_clip_feat = nn.Parameter(torch.zeros(1, self.visual_in_channels), requires_grad=True)
        self.empty_sync_feat = nn.Parameter(torch.zeros(1, self.sync_feat_dim), requires_grad=True)
        nn.init.constant_(self.empty_clip_feat, 0)
        nn.init.constant_(self.empty_sync_feat, 0)

    def get_empty_string_sequence(self, bs=None) -> torch.Tensor:
        if bs is None:
            return self.empty_string_feat
        else:
            return self.empty_string_feat.unsqueeze(0).expand(bs, -1, -1)

    def get_empty_clip_sequence(self, bs=None, len=None) -> torch.Tensor:
        len = len if len is not None else self.clip_len
        if bs is None:
            return self.empty_clip_feat.expand(len, -1)  # 15s
        else:
            return self.empty_clip_feat.unsqueeze(0).expand(bs, len, -1)  # 15s

    def get_empty_sync_sequence(self, bs=None, len=None) -> torch.Tensor:
        len = len if len is not None else self.sync_len
        if bs is None:
            return self.empty_sync_feat.expand(len, -1)
        else:
            return self.empty_sync_feat.unsqueeze(0).expand(bs, len, -1)

    def build_rope_for_audio_visual(self, audio_emb_len, visual_cond_len):
        assert self.patch_size == 1
        # ======================================== Build RoPE for audio tokens ======================================
        target_ndim = 1  # n-d RoPE
        rope_sizes = [audio_emb_len]
        head_dim = self.hidden_size // self.num_heads
        rope_dim_list = self.rope_dim_list
        if rope_dim_list is None:
            rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
        assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) should equal to head_dim of attention layer"
        freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
            rope_dim_list=rope_dim_list,
            start=rope_sizes,
            theta=10000,
            use_real=True,
            theta_rescale_factor=1.0,
        )

        # ========================== Build RoPE for clip tokens =========================
        target_ndim = 1  # n-d RoPE
        rope_sizes = [visual_cond_len]
        head_dim = self.hidden_size // self.num_heads
        rope_dim_list = self.rope_dim_list
        if rope_dim_list is None:
            rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
        assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) should equal to head_dim of attention layer"
        v_freqs_cos, v_freqs_sin = get_nd_rotary_pos_embed(
            rope_dim_list=rope_dim_list,
            start=rope_sizes,
            theta=10000,
            use_real=True,
            theta_rescale_factor=1.0,
            freq_scaling=1.0 * audio_emb_len / visual_cond_len,
        )
        return freqs_cos, freqs_sin, v_freqs_cos, v_freqs_sin

    def build_rope_for_interleaved_audio_visual(self, total_len):
        assert self.patch_size == 1
        # ========================== Build RoPE for audio tokens ========================
        target_ndim = 1  # n-d RoPE
        rope_sizes = [total_len]
        head_dim = self.hidden_size // self.num_heads
        rope_dim_list = self.rope_dim_list
        if rope_dim_list is None:
            rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
        assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) should equal to head_dim of attention layer"
        freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
            rope_dim_list=rope_dim_list,
            start=rope_sizes,
            theta=10000,
            use_real=True,
            theta_rescale_factor=1.0,
        )
        return freqs_cos, freqs_sin

    def set_attn_mode(self, new_mode):
        for block in self.triple_blocks:
            block.set_attn_mode(new_mode)
        for block in self.single_blocks:
            block.set_attn_mode(new_mode)

    def enable_deterministic(self):
        for block in self.triple_blocks:
            block.enable_deterministic()
        for block in self.single_blocks:
            block.enable_deterministic()

    def disable_deterministic(self):
        for block in self.triple_blocks:
            block.disable_deterministic()
        for block in self.single_blocks:
            block.disable_deterministic()

    def forward(
        self,
        x: torch.Tensor,
        t: torch.Tensor,  # Should be in range(0, 1000).
        clip_feat: Optional[torch.Tensor] = None,
        cond: torch.Tensor = None,
        audio_mask: Optional[torch.Tensor] = None,
        cond_mask: torch.Tensor = None,
        sync_feat: Optional[torch.Tensor] = None,
        drop_visual: Optional[List[bool]] = None,
        return_dict: bool = True,
    ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
        out = {}
        audio = x
        bs, _, ol = x.shape
        tl = ol // self.patch_size

        # Prepare learnable empty conditions for visual condition
        if drop_visual is not None:
            clip_feat[drop_visual] = self.get_empty_clip_sequence().to(dtype=clip_feat.dtype)
            sync_feat[drop_visual] = self.get_empty_sync_sequence().to(dtype=sync_feat.dtype)

        # ========================= Prepare time & visual modulation =========================
        vec = self.time_in(t)
        sync_vec = None
        if self.sync_modulation:
            assert sync_feat is not None and sync_feat.shape[1] % 8 == 0
            sync_feat = sync_feat.view(bs, int(sync_feat.shape[1] / 8), 8, self.sync_feat_dim) + self.sync_pos_emb
            sync_feat = sync_feat.view(bs, -1, self.sync_feat_dim)  # bs, num_segments * 8, channels
            sync_vec = self.sync_in(sync_feat)  # bs, num_segments * 8, c
            sync_vec = (
                F.interpolate(sync_vec.transpose(1, 2), size=(tl), mode="nearest-exact").contiguous().transpose(1, 2)
            )  # bs, tl, c
            sync_vec = sync_vec + vec.unsqueeze(1)
        elif self.add_sync_feat_to_audio:
            assert sync_feat is not None and sync_feat.shape[1] % 8 == 0
            sync_feat = sync_feat.view(bs, sync_feat.shape[1] // 8, 8, self.sync_feat_dim) + self.sync_pos_emb
            sync_feat = sync_feat.view(bs, -1, self.sync_feat_dim)  # bs, num_segments * 8, channels
            sync_feat = self.sync_in(sync_feat)  # bs, num_segments * 8, c
            add_sync_feat_to_audio = (
                F.interpolate(sync_feat.transpose(1, 2), size=(tl), mode="nearest-exact").contiguous().transpose(1, 2)
            )  # bs, tl, c

        # ========================= Get text, audio and video clip embedding =========================
        cond = self.cond_in(cond)
        cond_seq_len = cond.shape[1]

        audio = self.audio_embedder(x)
        audio_seq_len = audio.shape[1]
        v_cond = self.visual_proj(clip_feat)
        v_cond_seq_len = v_cond.shape[1]

        # ========================= Compute attention mask =========================
        attn_mask = None
        if self.use_attention_mask:
            assert cond_mask is not None
            batch_size = audio.shape[0]
            seq_len = cond_seq_len + v_cond_seq_len + audio_seq_len

            # get default audio_mask and v_cond_mask
            audio_mask = torch.ones((batch_size, audio_seq_len), dtype=torch.bool, device=audio.device)
            v_cond_mask = torch.ones((batch_size, v_cond_seq_len), dtype=torch.bool, device=audio.device)

            # batch_size x seq_len
            concat_mask = torch.cat([cond_mask, v_cond_mask, audio_mask], dim=1)
            # batch_size x 1 x seq_len x seq_len
            attn_mask_1 = concat_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
            # batch_size x 1 x seq_len x seq_len
            attn_mask_2 = attn_mask_1.transpose(2, 3)
            # batch_size x 1 x seq_len x seq_len, 1 for broadcasting of num_heads
            attn_mask = (attn_mask_1 & attn_mask_2).bool()
            # avoids self-attention weight being NaN for text padding tokens
            attn_mask[:, :, :, 0] = True


        # ========================= Build rope for audio and clip tokens =========================
        if self.interleaved_audio_visual_rope:
            freqs_cos, freqs_sin = self.build_rope_for_interleaved_audio_visual(audio_seq_len * 2)
            v_freqs_cos = v_freqs_sin = None
        else:
            freqs_cos, freqs_sin, v_freqs_cos, v_freqs_sin = self.build_rope_for_audio_visual(
                audio_seq_len, v_cond_seq_len
            )

        # ========================= Pass through DiT blocks =========================
        freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None
        v_freqs_cis = (v_freqs_cos, v_freqs_sin) if v_freqs_cos is not None else None

        if self.add_sync_feat_to_audio:
            add_sync_layer = 0
        assert (
            add_sync_layer < self.depth_triple_blocks
        ), f"The layer to add mel_spectrogram feature and sync feature should in the triple_stream_blocks (n: {self.depth_triple_blocks})."
        # Triple-stream blocks
        for layer_num, block in enumerate(self.triple_blocks):
            if self.add_sync_feat_to_audio and layer_num == add_sync_layer:
                audio = audio + add_sync_feat_to_audio
            triple_block_args = [audio, cond, v_cond, attn_mask, vec, freqs_cis, v_freqs_cis, sync_vec]
            if (
                self.training
                and self.gradient_checkpoint
                and (self.gradient_checkpoint_layers == -1 or layer_num < self.gradient_checkpoint_layers)
            ):
                audio, cond, v_cond = torch.utils.checkpoint.checkpoint(
                    ckpt_wrapper(block), *triple_block_args, use_reentrant=False
                )
            else:
                audio, cond, v_cond = block(*triple_block_args)

        x = audio 
        if sync_vec is not None:
            vec = vec.unsqueeze(1).repeat(1, cond_seq_len + v_cond_seq_len, 1)
            vec = torch.cat((vec, sync_vec), dim=1)

        freqs_cos, freqs_sin, _, _ = self.build_rope_for_audio_visual(audio_seq_len, v_cond_seq_len)
        if self.add_sync_feat_to_audio:
            vec = add_sync_feat_to_audio + vec.unsqueeze(dim=1)
        if len(self.single_blocks) > 0:
            for layer_num, block in enumerate(self.single_blocks):
                single_block_args = [
                    x,
                    vec,
                    (freqs_cos, freqs_sin),
                ]
                if (
                    self.training
                    and self.gradient_checkpoint
                    and (
                        self.gradient_checkpoint_layers == -1
                        or layer_num + len(self.triple_blocks) < self.gradient_checkpoint_layers
                    )
                ):
                    x = torch.utils.checkpoint.checkpoint(ckpt_wrapper(block), *single_block_args, use_reentrant=False)
                else:
                    x = block(*single_block_args)

        audio = x

        # ========================= Final layer =========================
        if sync_vec is not None:
            vec = sync_vec
        audio = self.final_layer(audio, vec)  # (N, T, patch_size * out_channels)
        audio = self.unpatchify1d(audio, tl)

        if return_dict:
            out["x"] = audio
            return out
        return audio

    def unpatchify1d(self, x, l):
        # x: (N, L, patch_size * C)
        # audio: (N, C, T), T == L * patch_size
        c = self.unpatchify_channels
        p = self.patch_size
        assert l == x.shape[1]

        x = x.reshape(shape=(x.shape[0], l, p, c))
        x = torch.einsum("ntpc->nctp", x)
        audio = x.reshape(shape=(x.shape[0], c, l * p))
        return audio

    def params_count(self):
        counts = {
            "triple": sum(
                [
                    sum(p.numel() for p in block.audio_cross_q.parameters())
                    + sum(p.numel() for p in block.v_cond_cross_q.parameters())
                    + sum(p.numel() for p in block.text_cross_kv.parameters())
                    + sum(p.numel() for p in block.audio_self_attn_qkv.parameters())
                    + sum(p.numel() for p in block.v_cond_attn_qkv.parameters())
                    + sum(p.numel() for p in block.audio_mlp.parameters())
                    + sum(p.numel() for p in block.audio_self_proj.parameters())
                    + sum(p.numel() for p in block.v_cond_self_proj.parameters())
                    + sum(p.numel() for p in block.v_cond_mlp.parameters())
                    for block in self.triple_blocks
                ]
            ),
            "single": sum(
                [
                    sum(p.numel() for p in block.linear1.parameters())
                    + sum(p.numel() for p in block.linear2.parameters())
                    for block in self.single_blocks
                ]
            ),
            "total": sum(p.numel() for p in self.parameters()),
        }

        counts["attn+mlp"] = counts["triple"] + counts["single"]
        return counts