James Zhou
[init]
9867d34
from typing import Callable
import torch
import torch.nn as nn
class ModulateDiT(nn.Module):
def __init__(self, hidden_size: int, factor: int, act_layer: Callable, dtype=None, device=None):
factory_kwargs = {"dtype": dtype, "device": device}
super().__init__()
self.act = act_layer()
self.linear = nn.Linear(hidden_size, factor * hidden_size, bias=True, **factory_kwargs)
# Zero-initialize the modulation
nn.init.zeros_(self.linear.weight)
nn.init.zeros_(self.linear.bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.linear(self.act(x))
def modulate(x, shift=None, scale=None):
if x.ndim == 3:
shift = shift.unsqueeze(1) if shift is not None and shift.ndim == 2 else None
scale = scale.unsqueeze(1) if scale is not None and scale.ndim == 2 else None
if scale is None and shift is None:
return x
elif shift is None:
return x * (1 + scale)
elif scale is None:
return x + shift
else:
return x * (1 + scale) + shift
def apply_gate(x, gate=None, tanh=False):
if gate is None:
return x
if gate.ndim == 2 and x.ndim == 3:
gate = gate.unsqueeze(1)
if tanh:
return x * gate.tanh()
else:
return x * gate
def ckpt_wrapper(module):
def ckpt_forward(*inputs):
outputs = module(*inputs)
return outputs
return ckpt_forward