James Zhou
[init]
9867d34
import logging
import math
import random
from typing import Tuple
import torch
import torchvision
import torchaudio
import numpy as np
import einops
def sec2frames(sec, fps):
return int(sec * fps)
def frames2sec(frames, fps):
return frames / fps
class EqualifyFromRight(torch.nn.Module):
def __init__(self, clip_max_len_sec=10):
"""
Takes the dataset item and makes sure more streams are of an equal size in terms of fps.
It, however, assumes that the signal is synched and trims the ending parts ('from the right').
"""
super().__init__()
self.clip_max_len_sec = clip_max_len_sec
def forward(self, item):
"""
`item`: {'video': (Tv, C, H, W), 'audio': (Ta,),
'meta': {
'audio': {'framerate': [float], 'duration': [float]}
'video': {'fps': [float], 'duration': [float]}}
"""
a_fps = item["meta"]["audio"]["framerate"][0]
v_fps = item["meta"]["video"]["fps"][0]
Ta = item["audio"].shape[0]
Tv, C, H, W = item["video"].shape
a_len_secs = Ta / a_fps
v_len_secs = Tv / v_fps
min_len = min(self.clip_max_len_sec, a_len_secs, v_len_secs)
a_frames_per_v_frame = a_fps // v_fps
v_len_frames = int(v_fps * min_len)
a_len_frames = int(a_frames_per_v_frame * v_len_frames)
# print(a_len_frames, v_len_frames)
assert a_len_frames <= Ta and v_len_frames <= Tv
item["audio"] = item["audio"][:a_len_frames]
item["video"] = item["video"][:v_len_frames, :, :, :]
return item
class RGBSpatialCrop(torch.nn.Module):
def __init__(self, input_size, is_random):
super().__init__()
assert input_size is not None, f"smaller_input_size is `{input_size}`"
if isinstance(input_size, int):
input_size = (input_size, input_size)
self.input_size = input_size
self.is_random = is_random
@staticmethod
def get_random_crop_sides(vid, output_size):
"""Slice parameters for random crop"""
h, w = vid.shape[-2:]
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
@staticmethod
def get_center_crop_sides(vid, output_size):
"""Slice parameters for center crop"""
h, w = vid.shape[-2:]
th, tw = output_size
i = int(round((h - th) / 2.0))
j = int(round((w - tw) / 2.0))
return i, j, th, tw
def forward(self, item):
# (Tv, C, H, W)
vid = item["video"]
if self.is_random:
i, j, h, w = self.get_random_crop_sides(vid, self.input_size)
else:
i, j, h, w = self.get_center_crop_sides(vid, self.input_size)
item["video"] = vid[..., i : (i + h), j : (j + w)]
return item
class Resize(torchvision.transforms.Resize):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, item):
item["video"] = super().forward(item["video"])
return item
class RGBSpatialCropSometimesUpscale(torch.nn.Module):
"""This (randomly) crops the input video and with prob `sometimes_p` this crop is smaller but upscaled
to `target_input_size`"""
def __init__(self, sometimes_p, target_input_size, is_random, smaller_input_size=None):
super().__init__()
self.sometimes_p = sometimes_p
self.do_sometimes_upscale = sometimes_p is not None and sometimes_p > 0
self.crop_only = RGBSpatialCrop(target_input_size, is_random)
if self.do_sometimes_upscale:
self.crop_further_and_upscale = torchvision.transforms.Compose(
[
RGBSpatialCrop(smaller_input_size, is_random),
Resize(target_input_size, antialias=None),
]
)
def forward(self, item):
assert len(item["video"].shape) == 4, (
f"{item['video'].shape}: if it is applied after GenerateMultipleClips,"
"augs should be applied to each clip separately, not to the whole video array. "
"Otherwise, ignore this warning (comment it)."
)
if self.do_sometimes_upscale and self.sometimes_p > torch.rand(1):
return self.crop_further_and_upscale(item)
else:
return self.crop_only(item)
class RandomApplyColorDistortion(torch.nn.Module):
def __init__(self, p_gray_scale=0.0, p_color_jitter=0.0, s=1.0) -> None:
super().__init__()
self.p_gray_scale = p_gray_scale
self.p_color_jitter = p_color_jitter
self.s = s
assert 0 <= self.p_color_jitter <= 1 and 0 <= self.p_gray_scale <= 1, (p_color_jitter, p_gray_scale)
# SimCLR params
color_jitter = torchvision.transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s)
rand_color_jitter = torchvision.transforms.RandomApply([color_jitter], p_color_jitter)
rand_gray = torchvision.transforms.RandomGrayscale(p_gray_scale)
self.transforms = torchvision.transforms.Compose([rand_color_jitter, rand_gray])
def apply_to_single_clip(self, clip):
return self.transforms(clip)
def apply_to_each_clip(self, clips):
for i, clip in enumerate(clips):
clips[i] = self.apply_to_single_clip(clip)
return clips
def forward(self, item):
has_batch_dim = len(item["video"].shape) == 5
if has_batch_dim:
fn = self.apply_to_each_clip
else:
fn = self.apply_to_single_clip
item["video"] = fn(item["video"])
return item
class ApplyColorJitterFrameWise(torch.nn.Module):
def __init__(self, s=1.0) -> None:
super().__init__()
self.s = s
# SimCLR params
self.transform = torchvision.transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s)
def apply_to_single_clip(self, clip):
for i, frame in enumerate(clip):
clip[i] = self.transform(frame)
return clip
def apply_to_each_clip(self, clips):
for i, clip in enumerate(clips):
clips[i] = self.apply_to_single_clip(clip)
return clips
def forward(self, item):
has_batch_dim = len(item["video"].shape) == 5
if has_batch_dim:
fn = self.apply_to_each_clip
else:
fn = self.apply_to_single_clip
item["video"] = fn(item["video"])
return item
class RandomHorizontalFlip(torchvision.transforms.RandomHorizontalFlip):
def __init__(self, p=0.5):
super().__init__(p)
def apply_to_single_clip(self, clip):
return super().forward(clip)
def apply_to_each_clip(self, clips):
for i, clip in enumerate(clips):
clips[i] = self.apply_to_single_clip(clip)
return clips
def forward(self, item):
has_batch_dim = len(item["video"].shape) == 5
if has_batch_dim:
fn = self.apply_to_each_clip
else:
fn = self.apply_to_single_clip
item["video"] = fn(item["video"])
return item
def make_class_grid(
leftmost_val,
rightmost_val,
grid_size,
add_extreme_offset: bool = False,
seg_size_vframes: int = None,
nseg: int = None,
step_size_seg: float = None,
vfps: float = None,
):
assert grid_size >= 3, f"grid_size: {grid_size} doesnot make sense. If =2 -> (-1,1); =1 -> (-1); =0 -> ()"
grid = torch.from_numpy(np.linspace(leftmost_val, rightmost_val, grid_size)).float()
if add_extreme_offset:
assert all([seg_size_vframes, nseg, step_size_seg]), f"{seg_size_vframes} {nseg} {step_size_seg}"
seg_size_sec = seg_size_vframes / vfps
trim_size_in_seg = nseg - (1 - step_size_seg) * (nseg - 1)
extreme_value = trim_size_in_seg * seg_size_sec
grid = torch.cat([grid, torch.tensor([extreme_value])]) # adding extreme offset to the class grid
return grid
def quantize_offset(grid: torch.Tensor, off_sec: float) -> Tuple[float, int]:
"""Takes in the offset in seconds and snaps it onto the closest grid element.
Returns the grid value and its index."""
closest_grid_el = (grid - off_sec).abs().argmin()
return grid[closest_grid_el], closest_grid_el
def apply_a_jitter(a_start_i, a_len_frames, a_crop_len_frames, a_fps, max_a_jitter_sec):
max_a_start_i = a_len_frames - a_crop_len_frames
max_a_jitter_i = sec2frames(max_a_jitter_sec, a_fps)
max_a_jitter_i_left = min(a_start_i, max_a_jitter_i)
max_a_jitter_i_right = min(max_a_start_i - a_start_i, max_a_jitter_i)
# jitter is U[left, right]
a_jitter_i = random.randint(-max_a_jitter_i_left, max_a_jitter_i_right)
# apply jitter
a_start_i = a_start_i + a_jitter_i
# making sure that any value from `a_start_i + U[left, right]` will be inside of [0, len-crop] region
assert 0 <= a_start_i <= max_a_start_i, f"{a_jitter_i} {max_a_jitter_i_left} {max_a_jitter_i_right} {max_a_start_i}"
return a_start_i, a_jitter_i
class TemporalCropAndOffset(torch.nn.Module):
def __init__(
self,
crop_len_sec: float,
max_off_sec: float,
offset_type="grid",
do_offset: bool = True,
grid_size: int = None,
max_wiggle_sec: float = None,
add_doubt_cls: bool = False,
segment_size_vframes: int = None,
n_segments: int = None,
step_size_seg: float = None,
vfps: float = None,
prob_oos: float = None,
):
super().__init__()
self.crop_len_sec = crop_len_sec
self.do_offset = do_offset
self.grid_size = grid_size
self.offset_type = offset_type
self.max_off_sec = max_off_sec
self.max_a_jitter_sec = max_wiggle_sec
if do_offset:
if offset_type == "grid":
self.class_grid = make_class_grid(
-max_off_sec,
max_off_sec,
grid_size,
add_doubt_cls,
segment_size_vframes,
n_segments,
step_size_seg,
vfps,
)
logging.info(f"Offsets class grid: {self.class_grid}")
if self.max_a_jitter_sec is not None:
assert (max_wiggle_sec - 1e-6) <= (
(self.class_grid[1] - self.class_grid[0]) / 2
), f"{self.class_grid}"
elif offset_type == "uniform":
self.off_dist = torch.distributions.uniform.Uniform(-max_off_sec, max_off_sec)
logging.info(f"Offset uniform distribution: {self.off_dist}")
elif offset_type == "uniform_binary":
self.itu_t_range = (-0.125, 0.045)
self.prob_oos = prob_oos
self.ins_dist = torch.distributions.uniform.Uniform(self.itu_t_range[0], self.itu_t_range[1])
self.off_dist = torch.distributions.uniform.Uniform(-max_off_sec, max_off_sec)
else:
raise NotImplementedError(f"Unknown offset type: {offset_type}")
def forward(self, item):
vid = item["video"]
aud = item["audio"]
v_len_frames, C, H, W = vid.shape
a_len_frames = aud.shape[0]
v_fps = int(item["meta"]["video"]["fps"][0])
a_fps = int(item["meta"]["audio"]["framerate"][0])
v_crop_len_frames = sec2frames(self.crop_len_sec, v_fps)
a_crop_len_frames = sec2frames(self.crop_len_sec, a_fps)
if self.do_offset:
# trying to get the offset parameters (for instance during valid and test we have fixed offsets)
offset_sec = item["targets"].get("offset_sec", None)
v_start_i_sec = item["targets"].get("v_start_i_sec", None)
if "offset_target" in item["targets"]:
is_oos = item["targets"]["offset_target"].get("oos", None)
# train-time
if offset_sec is None and v_start_i_sec is None:
# aud starts `offset_sec` earlier than it should; aud has what will be shown after offset_sec
if self.offset_type == "grid":
offset_sec = random.choice(self.class_grid.tolist())
elif self.offset_type == "uniform":
offset_sec = self.off_dist.sample().item()
elif self.offset_type == "uniform_binary":
# in-sync: Uniform(-0.125, 0.045)
# out-of-sync: Uniform(-5.5, 5.5) and resampled until not in Uniform(-0.125, 0.045)
# first, we sample if the offset is out-of-sync with prob_oss
is_oos = (torch.rand(1) < self.prob_oos).item()
if is_oos:
# second, we sample the offset itself (if in in-sync range, trying again)
offset_sec = self.off_dist.sample().item()
while self.itu_t_range[0] <= offset_sec <= self.itu_t_range[1]:
offset_sec = self.off_dist.sample().item()
else:
offset_sec = self.ins_dist.sample().item()
offset_sec = round(offset_sec, 2)
v_start_max_sec = frames2sec(v_len_frames - v_crop_len_frames, v_fps)
assert v_start_max_sec > 0, f'{v_len_frames} {v_crop_len_frames} {v_fps} @ {item["path"]}'
# `v_start_sec` IS NOT rounded to the fps grid
v_start_sec = random.uniform(max(0, -offset_sec), min(v_start_max_sec, v_start_max_sec - offset_sec))
assert 0 <= v_start_sec <= v_start_max_sec, f'{v_start_sec} {v_start_max_sec} {item["path"]}'
v_start_i = sec2frames(v_start_sec, v_fps)
# `v_start_i_sec` IS rounded to the fps grid
v_start_i_sec = frames2sec(v_start_i, v_fps)
else:
offset_sec = round(offset_sec, 2)
v_start_i = sec2frames(v_start_i_sec, v_fps)
v_end_i = v_start_i + v_crop_len_frames
# `a_start_i` depends on the rounded value `v_start_i_sec`, otherwise
# (v_start_sec) we have ±0.1 jittering
a_start_i = sec2frames(v_start_i_sec + offset_sec, a_fps)
else:
offset_sec = 0.0
is_random_crop = item["split"] == "train"
v_start_i, v_end_i = self.get_crop_idx(v_len_frames, v_crop_len_frames, is_random=is_random_crop)
v_start_i_sec = frames2sec(v_start_i, v_fps)
a_start_i = sec2frames(v_start_i_sec, a_fps)
# sometimes due to the rounding error e.g. v_start_sec = 1.505 but sec2frames(1.505, 25) = 1.48
# given offset is -1.5, the a_start_i will be a small negative value. (likely a_fps * 1/v_fps * 0.5)
if a_start_i < 0:
how_much_out = a_start_i
logging.info(f'a_start_i is negative ({how_much_out}) at {item["path"]}')
if abs(how_much_out) <= a_fps / v_fps:
logging.info("fixing it")
a_start_i += abs(how_much_out)
else:
raise Exception(f'{how_much_out} {item["path"]}')
if self.max_a_jitter_sec is not None and self.max_a_jitter_sec > 0:
a_start_i, a_jitter_i = apply_a_jitter(
a_start_i, a_len_frames, a_crop_len_frames, a_fps, self.max_a_jitter_sec
)
item["meta"]["a_jitter_i"] = a_jitter_i
a_end_i = a_start_i + a_crop_len_frames
assert v_start_i < v_end_i and a_start_i < a_end_i
assert aud.shape[0] >= a_end_i, f'{aud.shape} {a_end_i} {item["path"]}'
assert vid.shape[0] >= v_end_i, f'{vid.shape} {v_end_i} {item["path"]}'
vid, aud = vid[v_start_i:v_end_i, :, :, :], aud[a_start_i:a_end_i]
item["video"] = vid
item["audio"] = aud
assert item["video"].shape[0] == v_fps * self.crop_len_sec, f'{item["video"].shape} {item["path"]}'
assert item["audio"].shape[0] == a_fps * self.crop_len_sec, f'{item["audio"].shape} {item["path"]}'
# caching parameters
if self.do_offset:
if self.offset_type == "grid":
offset_label, offset_target = quantize_offset(self.class_grid, offset_sec)
elif self.offset_type == "uniform":
offset_label, offset_target = offset_sec, offset_sec
elif self.offset_type == "uniform_binary":
offset_label, offset_target = offset_sec, {"oos": is_oos, "offset": offset_sec}
item["targets"]["offset_sec"] = offset_sec
item["targets"]["v_start_i_sec"] = v_start_i_sec
item["targets"]["offset_label"] = offset_label
# assert 'offset_target' not in item['targets'], f'{item["targets"]}. What passed it there?'
item["targets"]["offset_target"] = offset_target
return item
def get_crop_idx(self, len_frames: int, crop_len_frames: int, is_random=True):
if len_frames == crop_len_frames:
return 0, len_frames
if is_random:
left_i = random.randint(0, len_frames - crop_len_frames)
else:
left_i = int(round((len_frames - crop_len_frames) / 2.0))
return left_i, left_i + crop_len_frames
class GenerateMultipleSegments(torch.nn.Module):
"""
Given an item with video and audio, generates a batch of `n_segments` segments
of length `segment_size_vframes` (if None, the max number of segments will be made).
If `is_start_random` is True, the starting position of the 1st segment will be random but respecting
n_segments.
`audio_jitter_sec` is the amount of audio offset in seconds.
"""
def __init__(
self,
segment_size_vframes: int,
n_segments: int = None,
is_start_random: bool = False,
audio_jitter_sec: float = 0.0,
step_size_seg: float = 1,
):
super().__init__()
self.segment_size_vframes = segment_size_vframes
self.n_segments = n_segments
self.is_start_random = is_start_random
self.audio_jitter_sec = audio_jitter_sec
self.step_size_seg = step_size_seg
logging.info(f"Segment step size: {self.step_size_seg}")
def forward(self, item):
v_len_frames, C, H, W = item["video"].shape
a_len_frames = item["audio"].shape[0]
v_fps = int(item["meta"]["video"]["fps"][0])
a_fps = int(item["meta"]["audio"]["framerate"][0])
## Determining the number of segments
# segment size
segment_size_vframes = self.segment_size_vframes
segment_size_aframes = sec2frames(frames2sec(self.segment_size_vframes, v_fps), a_fps)
# step size (stride)
stride_vframes = int(self.step_size_seg * segment_size_vframes)
stride_aframes = int(self.step_size_seg * segment_size_aframes)
# calculating the number of segments. (W - F + 2P) / S + 1
n_segments_max_v = math.floor((v_len_frames - segment_size_vframes) / stride_vframes) + 1
n_segments_max_a = math.floor((a_len_frames - segment_size_aframes) / stride_aframes) + 1
# making sure audio and video can accommodate the same number of segments
n_segments_max = min(n_segments_max_v, n_segments_max_a)
n_segments = n_segments_max if self.n_segments is None else self.n_segments
assert n_segments <= n_segments_max, (
f"cant make {n_segments} segs of len {self.segment_size_vframes} in a vid "
f'of len {v_len_frames} for {item["path"]}'
)
# (n_segments, 2) each
v_ranges, a_ranges = self.get_sequential_seg_ranges(
v_len_frames, a_len_frames, v_fps, a_fps, n_segments, segment_size_aframes
)
# segmenting original streams (n_segments, segment_size_frames, C, H, W)
item["video"] = torch.stack([item["video"][s:e] for s, e in v_ranges], dim=0)
item["audio"] = torch.stack([item["audio"][s:e] for s, e in a_ranges], dim=0)
return item
def get_sequential_seg_ranges(self, v_len_frames, a_len_frames, v_fps, a_fps, n_seg, seg_size_aframes):
# if is_start_random is True, the starting position of the 1st segment will
# be random but respecting n_segments like so: "-CCCCCCCC---" (maybe with fixed overlap),
# else the segments are taken from the middle of the video respecting n_segments: "--CCCCCCCC--"
seg_size_vframes = self.segment_size_vframes # for brevity
# calculating the step size in frames
step_size_vframes = int(self.step_size_seg * seg_size_vframes)
step_size_aframes = int(self.step_size_seg * seg_size_aframes)
# calculating the length of the sequence of segments (and in frames)
seg_seq_len = n_seg * self.step_size_seg + (1 - self.step_size_seg)
vframes_seg_seq_len = int(seg_seq_len * seg_size_vframes)
aframes_seg_seq_len = int(seg_seq_len * seg_size_aframes)
# doing temporal crop
max_v_start_i = v_len_frames - vframes_seg_seq_len
if self.is_start_random:
v_start_i = random.randint(0, max_v_start_i)
else:
v_start_i = max_v_start_i // 2
a_start_i = sec2frames(frames2sec(v_start_i, v_fps), a_fps) # vid frames -> seconds -> aud frames
# make segments starts
v_start_seg_i = torch.tensor([v_start_i + i * step_size_vframes for i in range(n_seg)]).int()
a_start_seg_i = torch.tensor([a_start_i + i * step_size_aframes for i in range(n_seg)]).int()
# apply jitter to audio
if self.audio_jitter_sec > 0:
jitter_aframes = sec2frames(self.audio_jitter_sec, a_fps)
# making sure after applying jitter, the audio is still within the audio boundaries
jitter_aframes = min(jitter_aframes, a_start_i, a_len_frames - a_start_i - aframes_seg_seq_len)
a_start_seg_i += random.randint(-jitter_aframes, jitter_aframes) # applying jitter to segments
# make segment ends
v_ends_seg_i = v_start_seg_i + seg_size_vframes
a_ends_seg_i = a_start_seg_i + seg_size_aframes # using the adjusted a_start_seg_i (with jitter)
# make ranges
v_ranges = torch.stack([v_start_seg_i, v_ends_seg_i], dim=1)
a_ranges = torch.stack([a_start_seg_i, a_ends_seg_i], dim=1)
assert (a_ranges >= 0).all() and (a_ranges <= a_len_frames).all(), f"{a_ranges} out of {a_len_frames}"
assert (v_ranges <= v_len_frames).all(), f"{v_ranges} out of {v_len_frames}"
return v_ranges, a_ranges
class TemporalCropAndOffsetForSyncabilityTraining(torch.nn.Module):
def __init__(
self,
max_off_sec: float,
do_offset: bool = True,
grid_size: int = None,
max_wiggle_sec: float = None,
segment_size_vframes: int = None,
n_segments: int = None,
step_size_seg: float = None,
vfps: float = None,
):
super().__init__()
seg_size_sec = segment_size_vframes / vfps
trim_size_in_seg = n_segments - (1 - step_size_seg) * (n_segments - 1)
self.crop_len_sec = round(trim_size_in_seg * seg_size_sec, 2)
logging.info(f"Crop len: {self.crop_len_sec}")
self.do_offset = do_offset
self.grid_size = grid_size
self.max_off_sec = max_off_sec
self.max_a_jitter_sec = max_wiggle_sec
self.segment_size_vframes = segment_size_vframes
self.n_segments = n_segments
self.step_size_seg = step_size_seg
self.prob_syncable = 0.5
if do_offset:
self.class_grid = make_class_grid(-max_off_sec, max_off_sec, grid_size)
logging.info(f"Offset class grid: {self.class_grid}")
if self.max_a_jitter_sec is not None:
assert (max_wiggle_sec - 1e-6) <= ((self.class_grid[1] - self.class_grid[0]) / 2), f"{self.class_grid}"
def forward(self, item):
vid = item["video"]
aud = item["audio"]
v_len_frames, C, H, W = vid.shape
a_len_frames = aud.shape[0]
v_fps = int(item["meta"]["video"]["fps"][0])
a_fps = int(item["meta"]["audio"]["framerate"][0])
v_crop_len_frames = sec2frames(self.crop_len_sec, v_fps)
a_crop_len_frames = sec2frames(self.crop_len_sec, a_fps)
if self.do_offset:
# trying to get the offset parameters (for instance during valid and test we have fixed offsets)
offset_sec = item["targets"].get("offset_sec", None)
v_start_i_sec = item["targets"].get("v_start_i_sec", None)
# train-time
if offset_sec is None and v_start_i_sec is None:
# for the syncability training, we want to have a syncable or non-syncable offset with 50% prob
offset_is_syncable = random.random() < self.prob_syncable # 1=syncable, 0=non-syncable
if offset_is_syncable:
offset_sec = random.choice(self.class_grid.tolist())
else:
offset_sec = random.choice([-self.crop_len_sec, self.crop_len_sec]) # either - or + offset
# aud starts `offset_sec` earlier than it should; aud has what will be shown after offset_sec
offset_sec = round(offset_sec, 2)
v_start_max_sec = frames2sec(v_len_frames - v_crop_len_frames, v_fps)
assert v_start_max_sec > 0, f'{v_len_frames} {v_crop_len_frames} {v_fps} @ {item["path"]}'
# `v_start_sec` IS NOT rounded to the fps grid
v_start_sec = random.uniform(max(0, -offset_sec), min(v_start_max_sec, v_start_max_sec - offset_sec))
assert 0 <= v_start_sec <= v_start_max_sec, f'{v_start_sec} {v_start_max_sec} {item["path"]}'
v_start_i = sec2frames(v_start_sec, v_fps)
v_end_i = v_start_i + v_crop_len_frames
# `v_start_i_sec` IS rounded to the fps grid
v_start_i_sec = frames2sec(v_start_i, v_fps)
# `a_start_i` depends on the rounded value `v_start_i_sec`, otherwise
# (v_start_sec) we have ±0.1 jittering
a_start_i = sec2frames(v_start_i_sec + offset_sec, a_fps)
if self.max_a_jitter_sec is not None and self.max_a_jitter_sec > 0:
a_start_i, a_jitter_i = apply_a_jitter(
a_start_i, a_len_frames, a_crop_len_frames, a_fps, self.max_a_jitter_sec
)
item["meta"]["a_jitter_i"] = a_jitter_i
a_end_i = a_start_i + a_crop_len_frames
else:
offset_sec = round(offset_sec, 2)
v_start_i = sec2frames(v_start_i_sec, v_fps)
a_start_i = sec2frames(v_start_i_sec + offset_sec, a_fps)
v_end_i = v_start_i + v_crop_len_frames
a_end_i = a_start_i + a_crop_len_frames
else:
offset_sec = 0.0
is_random_crop = item["split"] == "train"
v_start_i, v_end_i = self.get_crop_idx(v_len_frames, v_crop_len_frames, is_random=is_random_crop)
v_start_i_sec = frames2sec(v_start_i, v_fps)
a_start_i = sec2frames(v_start_i_sec, a_fps)
if self.max_a_jitter_sec is not None and self.max_a_jitter_sec > 0:
a_start_i, a_jitter_i = apply_a_jitter(
a_start_i, a_len_frames, a_crop_len_frames, a_fps, self.max_a_jitter_sec
)
item["meta"]["a_jitter_i"] = a_jitter_i
a_end_i = a_start_i + a_crop_len_frames
# sometimes due to the rounding error e.g. v_start_sec = 1.505 but sec2frames(1.505, 25) = 1.48
# given offset is -1.5, the a_start_i will be a small negative value. (likely a_fps * 1/v_fps * 0.5)
if a_start_i < 0:
how_much_out = a_start_i
logging.info(f'a_start_i is negative ({how_much_out}) at {item["path"]}')
if abs(how_much_out) <= a_fps / v_fps:
logging.info("fixing it")
a_start_i += abs(how_much_out)
a_end_i += abs(how_much_out)
else:
raise Exception(f'{how_much_out} {item["path"]}')
assert v_start_i < v_end_i and a_start_i < a_end_i
assert aud.shape[0] >= a_end_i, f'{aud.shape} {a_end_i} {item["path"]}'
assert vid.shape[0] >= v_end_i, f'{vid.shape} {v_end_i} {item["path"]}'
vid, aud = vid[v_start_i:v_end_i, :, :, :], aud[a_start_i:a_end_i]
item["video"] = vid
item["audio"] = aud
assert item["video"].shape[0] == int(v_fps * self.crop_len_sec), f'{item["video"].shape} {item["path"]}'
assert item["audio"].shape[0] == int(a_fps * self.crop_len_sec), f'{item["audio"].shape} {item["path"]}'
# caching parameters
if self.do_offset:
# NOTE: this is useless for the extreme offsetting
offset_label, offset_target = quantize_offset(self.class_grid, offset_sec)
item["targets"]["offset_sec"] = offset_sec
item["targets"]["offset_label"] = offset_label
# assert 'offset_target' not in item['targets'], f'{item["targets"]}. What passed it there?'
item["targets"]["offset_target"] = offset_target
item["targets"]["v_start_i_sec"] = v_start_i_sec
item["targets"]["sync_target"] = int(offset_is_syncable)
return item
def get_crop_idx(self, len_frames: int, crop_len_frames: int, is_random=True):
if len_frames == crop_len_frames:
return 0, len_frames
if is_random:
left_i = random.randint(0, len_frames - crop_len_frames)
else:
left_i = int(round((len_frames - crop_len_frames) / 2.0))
return left_i, left_i + crop_len_frames
class RGBToFloatToZeroOne(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, item):
item["video"] = item["video"].to(torch.float32).div(255.0)
return item
class RGBToHalfToZeroOne(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, item):
item["video"] = item["video"].half().div(255.0)
return item
class RGBNormalize(torchvision.transforms.Normalize):
"""The same as the torchvision`s but with different interface for the dict.
This should work for any shape (..., C, H, W)"""
def __init__(self, mean, std, inplace=False):
super().__init__(mean, std, inplace)
logging.info(f"RGBNormalize: mean={mean}, std={std}")
def forward(self, item):
item["video"] = super().forward(item["video"])
item["meta"]["video"]["norm_stats"] = {"mean": torch.as_tensor(self.mean), "std": torch.as_tensor(self.std)}
return item
class AudioRandomVolume(torch.nn.Module):
def __init__(self, p: float, **kwargs):
super().__init__()
transform = torchaudio.transforms.Vol(**kwargs)
self.transform = torchvision.transforms.RandomApply([transform], p)
def apply_to_single_clip(self, clip):
return self.transform(clip)
def apply_to_each_clip(self, clips):
for i, clip in enumerate(clips):
clips[i] = self.apply_to_single_clip(clip)
return clips
def forward(self, item):
has_batch_dim = len(item["audio"].shape) == 2
if has_batch_dim:
fn = self.apply_to_each_clip
else:
fn = self.apply_to_single_clip
item["audio"] = fn(item["audio"])
return item
class AudioRandomLowpassFilter(torch.nn.Module):
def __init__(self, p: float, cutoff_freq: float, Q: float = 0.707):
super().__init__()
self.p = p
self.cutoff_freq = cutoff_freq
self.Q = Q
def apply_to_single_clip(self, clip, sr):
if self.p > torch.rand(1):
return torchaudio.functional.lowpass_biquad(clip, sr, self.cutoff_freq, self.Q)
else:
return clip
def apply_to_each_clip(self, clips, sr):
for i, clip in enumerate(clips):
clips[i] = self.apply_to_single_clip(clip, sr)
return clips
def forward(self, item):
has_batch_dim = len(item["audio"].shape) == 2
sr = int(item["meta"]["audio"]["framerate"][0])
if has_batch_dim:
fn = self.apply_to_each_clip
else:
fn = self.apply_to_single_clip
item["audio"] = fn(item["audio"], sr)
return item
class AudioRandomPitchShift(torch.nn.Module):
def __init__(self, p: float, shift: int) -> None:
super().__init__()
self.p = p
self.shift = shift
def apply_to_single_clip(self, wave, sr):
if self.p > torch.rand(1):
effects = [["pitch", f"{self.shift}"], ["rate", f"{sr}"]]
wave = wave.unsqueeze(0)
wave, _ = torchaudio.sox_effects.apply_effects_tensor(wave, sr, effects)
wave = wave.squeeze(0)
return wave
def apply_to_each_clip(self, waves, sr):
for i, wave in enumerate(waves):
waves[i] = self.apply_to_single_clip(wave, sr)
return waves
def forward(self, item):
has_batch_dim = len(item["audio"].shape) == 2
sr = int(item["meta"]["audio"]["framerate"][0])
if has_batch_dim:
fn = self.apply_to_each_clip
else:
fn = self.apply_to_single_clip
item["audio"] = fn(item["audio"], sr)
return item
class AudioRandomReverb(torch.nn.Module):
def __init__(self, p: float) -> None:
super().__init__()
self.p = p
self.effects = [["reverb", "-w"]]
def apply_to_single_clip(self, wave, fps):
if self.p > torch.rand(1):
wave = wave.unsqueeze(0)
wave, _ = torchaudio.sox_effects.apply_effects_tensor(wave, fps, self.effects)
wave = wave.mean(dim=0)
return wave
def apply_to_each_clip(self, waves, fps):
for i, wave in enumerate(waves):
waves[i] = self.apply_to_single_clip(wave, fps)
return waves
def forward(self, item):
has_batch_dim = len(item["audio"].shape) == 2
sr = int(item["meta"]["audio"]["framerate"][0])
if has_batch_dim:
fn = self.apply_to_each_clip
else:
fn = self.apply_to_single_clip
item["audio"] = fn(item["audio"], sr)
return item
class AudioRandomGaussNoise(torch.nn.Module):
def __init__(self, p: float, amplitude=0.01) -> None:
super().__init__()
self.p = p
self.amplitude = amplitude
def apply_to_single_clip(self, wave):
if self.p > torch.rand(1):
noise = torch.randn_like(wave, dtype=wave.dtype)
wave = wave + self.amplitude * noise
return wave
def apply_to_each_clip(self, waves):
for i, wave in enumerate(waves):
waves[i] = self.apply_to_single_clip(wave)
return waves
def forward(self, item):
has_batch_dim = len(item["audio"].shape) == 2
if has_batch_dim:
fn = self.apply_to_each_clip
else:
fn = self.apply_to_single_clip
item["audio"] = fn(item["audio"])
return item
class AudioMelSpectrogram(torch.nn.Module):
def __init__(self, **kwargs):
super().__init__()
self.spec = torchaudio.transforms.MelSpectrogram(**kwargs)
def forward(self, item):
item["audio"] = self.spec(item["audio"]) # safe for batched input
return item
class AudioLog(torch.nn.Module):
def __init__(self, eps=1e-6) -> None:
super().__init__()
self.eps = eps
def forward(self, item):
item["audio"] = torch.log(item["audio"] + self.eps)
return item
class PadOrTruncate(torch.nn.Module):
def __init__(self, max_spec_t: int, pad_mode: str = "constant", pad_value: float = 0.0):
super().__init__()
self.max_spec_t = max_spec_t
self.pad_mode = pad_mode
self.pad_value = pad_value
def forward(self, item):
item["audio"] = self.pad_or_truncate(item["audio"])
return item
def pad_or_truncate(self, audio):
difference = self.max_spec_t - audio.shape[-1] # safe for batched input
# pad or truncate, depending on difference
if difference > 0:
# pad the last dim (time) -> (..., n_mels, 0+time+difference) # safe for batched input
pad_dims = (0, difference)
audio = torch.nn.functional.pad(audio, pad_dims, self.pad_mode, self.pad_value)
elif difference < 0:
logging.warning(f"Truncating spec ({audio.shape}) to max_spec_t ({self.max_spec_t}).")
audio = audio[..., : self.max_spec_t] # safe for batched input
return audio
class AudioNormalizeAST(torch.nn.Module):
"""Normalization is done with two specified mean and std (half)"""
def __init__(self, mean: float, std: float) -> None:
super().__init__()
self.mean = mean
self.std = std
def forward(self, item):
item["audio"] = (item["audio"] - self.mean) / (2 * self.std)
item["meta"]["audio"]["norm_stats"] = {"mean": self.mean, "std": self.std}
return item
class PermuteStreams(torch.nn.Module):
def __init__(self, einops_order_audio: str, einops_order_rgb: str) -> None:
'''For example:
einops_order_audio: "S F T -> S T F"
einops_order_rgb: "S T C H W -> S C T H W"'''
super().__init__()
self.einops_order_audio = einops_order_audio
self.einops_order_rgb = einops_order_rgb
def forward(self, item):
if self.einops_order_audio is not None:
item["audio"] = einops.rearrange(item["audio"], self.einops_order_audio).contiguous()
if self.einops_order_rgb is not None:
item["video"] = einops.rearrange(item["video"], self.einops_order_rgb).contiguous()
return item
class ResampleAudio(torch.nn.Module):
def __init__(self, new_fps: int):
super().__init__()
self.new_fps = new_fps
def forward(self, item):
orig_fps = int(item["meta"]["audio"]["framerate"][0])
item["meta"]["audio"]["orig_shape"] = item["audio"].shape
if orig_fps != self.new_fps:
item["audio"] = torchaudio.functional.resample(item["audio"], orig_fps, self.new_fps)
item["meta"]["audio"]["framerate"][0] = self.new_fps
return item
class ResampleRGB(torch.nn.Module):
def __init__(self, new_fps: int) -> None:
super().__init__()
self.new_fps = new_fps
def forward(self, item):
orig_fps = float(item["meta"]["video"]["fps"][0])
item["meta"]["video"]["orig_shape"] = item["video"].shape
if orig_fps != self.new_fps:
duration_sec = item["video"].shape[0] / orig_fps
indices = torch.arange(0, orig_fps * duration_sec - 1e-9, orig_fps / self.new_fps)
# basically, rounding
indices = indices.to(dtype=torch.long)
item["video"] = item["video"][indices]
item["meta"]["video"]["fps"][0] = self.new_fps
return item
class ResizeAndLetterboxPad(torch.nn.Module):
"""Adapted from WACV24 Amazon`s challenge"""
def __init__(self, new_h, new_w):
super().__init__()
self.new_h = new_h
self.new_w = new_w
self.aspect_ratio = new_w / new_h
def forward(self, item):
item["video"] = self.resize_and_pad(item["video"])
return item
def resize_and_pad(self, rgb: torch.Tensor):
_, _, height, width = rgb.shape
current_aspect_ratio = width / height
if current_aspect_ratio > self.aspect_ratio:
scaled_height = round(self.new_w / current_aspect_ratio)
rgb = torchvision.transforms.functional.resize(rgb, (scaled_height, self.new_w), antialias=None)
top = (self.new_h - scaled_height) // 2
bottom = self.new_h - (scaled_height + top)
rgb = torch.nn.ConstantPad2d((0, 0, top, bottom), 0)(rgb)
elif current_aspect_ratio < self.aspect_ratio:
scaled_width = round(self.new_h * current_aspect_ratio)
rgb = torchvision.transforms.functional.resize(rgb, (self.new_h, scaled_width), antialias=None)
left = (self.new_w - scaled_width) // 2
right = self.new_w - (scaled_width + left)
rgb = torch.nn.ConstantPad2d((left, right, 0, 0), 0)(rgb)
return rgb
class ResampleResizeLetterboxPad(torch.nn.Module):
def __init__(self, afps, vfps, new_h, new_w) -> None:
super().__init__()
self.transforms = torchvision.transforms.Compose(
[ResampleAudio(new_fps=afps), ResampleRGB(new_fps=vfps), ResizeAndLetterboxPad(new_h=new_h, new_w=new_w)]
)
def forward(self, x: dict) -> dict:
return self.transforms(x)
class DoNothing(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__()
def forward(self, x: dict) -> dict:
return x
if __name__ == "__main__":
grid = make_class_grid(-1, 1, 21)
grid = make_class_grid(-2, 2, 41)
print("grid:", grid)
print("value quantization:", quantize_offset(grid, 0.06))
v_fps = 25.0
duration = 10.0
input = {
"video": torch.randint(0, 256, (int(duration * v_fps), 3, 720 // 2, 1280 // 2), dtype=torch.uint8),
"audio": torch.arange(221184 - 1).float(),
"targets": {},
"meta": {
"video": {"duration": [duration], "fps": [v_fps]},
"audio": {"duration": [duration], "framerate": [22050.0]},
"subtitles": {"duration": []},
"cc": {"duration": []},
},
"path": "/home/nvme/data/vggsound/video/-5cWCaoEDlE_261000_271000.mp4",
"split": "train",
}
print(input["audio"].shape, input["video"].shape)
fn = EqualifyFromRight(clip_max_len_sec=10)
input = fn(input)
print(input["audio"].shape, input["video"].shape)
fn = RGBSpatialCrop((224, 224), is_random=True)
# fn = RGBSpatialCrop((112, 112), is_random=True)
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
fn = Resize((224, 224))
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
fn = GenerateMultipleSegments(
segment_size_vframes=16, n_segments=14, is_start_random=False, audio_jitter_sec=0.05, step_size_seg=0.5
)
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
fn = RandomApplyColorDistortion(p_gray_scale=0.5, p_color_jitter=0.5, s=1.0)
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
fn = RGBToFloatToZeroOne()
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
print(input["meta"])
fn = RGBNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
print(input["video"].mean(dim=(0, 2, 3)))
print(input["meta"])
fn = AudioRandomReverb(p=1.0)
input = fn(input)
fn = AudioRandomVolume(p=1.0, gain=2.0, gain_type="amplitude")
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
fn = AudioRandomPitchShift(p=1.0, shift=1000)
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
fn = AudioRandomLowpassFilter(p=1.0, cutoff_freq=100)
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
fn = AudioRandomGaussNoise(p=1.0, amplitude=0.01)
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
fn = AudioLog()
input = fn(input)
print(input["audio"].shape, input["video"].shape, input["meta"]["audio"])
# audio only
input = {
"audio": torch.arange(221184).float(),
"meta": {
"video": {"duration": [10.0], "fps": [10.0]},
"audio": {"duration": [11.0], "framerate": [22050.0]},
"subtitles": {"duration": []},
"cc": {"duration": []},
},
"path": "/home/nvme/data/vggsound/video/-5cWCaoEDlE_261000_271000.mp4",
}
print(input["audio"].shape)
fn = AudioLog()
input = fn(input)
print(input["audio"].shape, input["meta"]["audio"])
print(input["meta"])
print(input["audio"].min(), input["audio"].max())