| 
							 | 
						import functools | 
					
					
						
						| 
							 | 
						from math import sqrt | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.distributed as distributed | 
					
					
						
						| 
							 | 
						import torch.nn as nn | 
					
					
						
						| 
							 | 
						import torch.nn.functional as F | 
					
					
						
						| 
							 | 
						import torchaudio | 
					
					
						
						| 
							 | 
						from einops import rearrange | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def default(val, d): | 
					
					
						
						| 
							 | 
						    return val if val is not None else d | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def eval_decorator(fn): | 
					
					
						
						| 
							 | 
						    def inner(model, *args, **kwargs): | 
					
					
						
						| 
							 | 
						        was_training = model.training | 
					
					
						
						| 
							 | 
						        model.eval() | 
					
					
						
						| 
							 | 
						        out = fn(model, *args, **kwargs) | 
					
					
						
						| 
							 | 
						        model.train(was_training) | 
					
					
						
						| 
							 | 
						        return out | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return inner | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def dvae_wav_to_mel( | 
					
					
						
						| 
							 | 
						    wav, mel_norms_file="../experiments/clips_mel_norms.pth", mel_norms=None, device=torch.device("cpu") | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    mel_stft = torchaudio.transforms.MelSpectrogram( | 
					
					
						
						| 
							 | 
						        n_fft=1024, | 
					
					
						
						| 
							 | 
						        hop_length=256, | 
					
					
						
						| 
							 | 
						        win_length=1024, | 
					
					
						
						| 
							 | 
						        power=2, | 
					
					
						
						| 
							 | 
						        normalized=False, | 
					
					
						
						| 
							 | 
						        sample_rate=22050, | 
					
					
						
						| 
							 | 
						        f_min=0, | 
					
					
						
						| 
							 | 
						        f_max=8000, | 
					
					
						
						| 
							 | 
						        n_mels=80, | 
					
					
						
						| 
							 | 
						        norm="slaney", | 
					
					
						
						| 
							 | 
						    ).to(device) | 
					
					
						
						| 
							 | 
						    wav = wav.to(device) | 
					
					
						
						| 
							 | 
						    mel = mel_stft(wav) | 
					
					
						
						| 
							 | 
						    mel = torch.log(torch.clamp(mel, min=1e-5)) | 
					
					
						
						| 
							 | 
						    if mel_norms is None: | 
					
					
						
						| 
							 | 
						        mel_norms = torch.load(mel_norms_file, map_location=device) | 
					
					
						
						| 
							 | 
						    mel = mel / mel_norms.unsqueeze(0).unsqueeze(-1) | 
					
					
						
						| 
							 | 
						    return mel | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Quantize(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, dim, n_embed, decay=0.99, eps=1e-5, balancing_heuristic=False, new_return_order=False): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.dim = dim | 
					
					
						
						| 
							 | 
						        self.n_embed = n_embed | 
					
					
						
						| 
							 | 
						        self.decay = decay | 
					
					
						
						| 
							 | 
						        self.eps = eps | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.balancing_heuristic = balancing_heuristic | 
					
					
						
						| 
							 | 
						        self.codes = None | 
					
					
						
						| 
							 | 
						        self.max_codes = 64000 | 
					
					
						
						| 
							 | 
						        self.codes_full = False | 
					
					
						
						| 
							 | 
						        self.new_return_order = new_return_order | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        embed = torch.randn(dim, n_embed) | 
					
					
						
						| 
							 | 
						        self.register_buffer("embed", embed) | 
					
					
						
						| 
							 | 
						        self.register_buffer("cluster_size", torch.zeros(n_embed)) | 
					
					
						
						| 
							 | 
						        self.register_buffer("embed_avg", embed.clone()) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, input, return_soft_codes=False): | 
					
					
						
						| 
							 | 
						        if self.balancing_heuristic and self.codes_full: | 
					
					
						
						| 
							 | 
						            h = torch.histc(self.codes, bins=self.n_embed, min=0, max=self.n_embed) / len(self.codes) | 
					
					
						
						| 
							 | 
						            mask = torch.logical_or(h > 0.9, h < 0.01).unsqueeze(1) | 
					
					
						
						| 
							 | 
						            ep = self.embed.permute(1, 0) | 
					
					
						
						| 
							 | 
						            ea = self.embed_avg.permute(1, 0) | 
					
					
						
						| 
							 | 
						            rand_embed = torch.randn_like(ep) * mask | 
					
					
						
						| 
							 | 
						            self.embed = (ep * ~mask + rand_embed).permute(1, 0) | 
					
					
						
						| 
							 | 
						            self.embed_avg = (ea * ~mask + rand_embed).permute(1, 0) | 
					
					
						
						| 
							 | 
						            self.cluster_size = self.cluster_size * ~mask.squeeze() | 
					
					
						
						| 
							 | 
						            if torch.any(mask): | 
					
					
						
						| 
							 | 
						                print(f"Reset {torch.sum(mask)} embedding codes.") | 
					
					
						
						| 
							 | 
						                self.codes = None | 
					
					
						
						| 
							 | 
						                self.codes_full = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        flatten = input.reshape(-1, self.dim) | 
					
					
						
						| 
							 | 
						        dist = flatten.pow(2).sum(1, keepdim=True) - 2 * flatten @ self.embed + self.embed.pow(2).sum(0, keepdim=True) | 
					
					
						
						| 
							 | 
						        soft_codes = -dist | 
					
					
						
						| 
							 | 
						        _, embed_ind = soft_codes.max(1) | 
					
					
						
						| 
							 | 
						        embed_onehot = F.one_hot(embed_ind, self.n_embed).type(flatten.dtype) | 
					
					
						
						| 
							 | 
						        embed_ind = embed_ind.view(*input.shape[:-1]) | 
					
					
						
						| 
							 | 
						        quantize = self.embed_code(embed_ind) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.balancing_heuristic: | 
					
					
						
						| 
							 | 
						            if self.codes is None: | 
					
					
						
						| 
							 | 
						                self.codes = embed_ind.flatten() | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                self.codes = torch.cat([self.codes, embed_ind.flatten()]) | 
					
					
						
						| 
							 | 
						                if len(self.codes) > self.max_codes: | 
					
					
						
						| 
							 | 
						                    self.codes = self.codes[-self.max_codes :] | 
					
					
						
						| 
							 | 
						                    self.codes_full = True | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.training: | 
					
					
						
						| 
							 | 
						            embed_onehot_sum = embed_onehot.sum(0) | 
					
					
						
						| 
							 | 
						            embed_sum = flatten.transpose(0, 1) @ embed_onehot | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if distributed.is_initialized() and distributed.get_world_size() > 1: | 
					
					
						
						| 
							 | 
						                distributed.all_reduce(embed_onehot_sum) | 
					
					
						
						| 
							 | 
						                distributed.all_reduce(embed_sum) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            self.cluster_size.data.mul_(self.decay).add_(embed_onehot_sum, alpha=1 - self.decay) | 
					
					
						
						| 
							 | 
						            self.embed_avg.data.mul_(self.decay).add_(embed_sum, alpha=1 - self.decay) | 
					
					
						
						| 
							 | 
						            n = self.cluster_size.sum() | 
					
					
						
						| 
							 | 
						            cluster_size = (self.cluster_size + self.eps) / (n + self.n_embed * self.eps) * n | 
					
					
						
						| 
							 | 
						            embed_normalized = self.embed_avg / cluster_size.unsqueeze(0) | 
					
					
						
						| 
							 | 
						            self.embed.data.copy_(embed_normalized) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        diff = (quantize.detach() - input).pow(2).mean() | 
					
					
						
						| 
							 | 
						        quantize = input + (quantize - input).detach() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if return_soft_codes: | 
					
					
						
						| 
							 | 
						            return quantize, diff, embed_ind, soft_codes.view(input.shape[:-1] + (-1,)) | 
					
					
						
						| 
							 | 
						        elif self.new_return_order: | 
					
					
						
						| 
							 | 
						            return quantize, embed_ind, diff | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            return quantize, diff, embed_ind | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def embed_code(self, embed_id): | 
					
					
						
						| 
							 | 
						        return F.embedding(embed_id, self.embed.transpose(0, 1)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class DiscretizationLoss(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, discrete_bins, dim, expected_variance, store_past=0): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.discrete_bins = discrete_bins | 
					
					
						
						| 
							 | 
						        self.dim = dim | 
					
					
						
						| 
							 | 
						        self.dist = torch.distributions.Normal(0, scale=expected_variance) | 
					
					
						
						| 
							 | 
						        if store_past > 0: | 
					
					
						
						| 
							 | 
						            self.record_past = True | 
					
					
						
						| 
							 | 
						            self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device="cpu")) | 
					
					
						
						| 
							 | 
						            self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device="cpu")) | 
					
					
						
						| 
							 | 
						            self.register_buffer("accumulator", torch.zeros(store_past, discrete_bins)) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.record_past = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x): | 
					
					
						
						| 
							 | 
						        other_dims = set(range(len(x.shape))) - set([self.dim]) | 
					
					
						
						| 
							 | 
						        averaged = x.sum(dim=tuple(other_dims)) / x.sum() | 
					
					
						
						| 
							 | 
						        averaged = averaged - averaged.mean() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.record_past: | 
					
					
						
						| 
							 | 
						            acc_count = self.accumulator.shape[0] | 
					
					
						
						| 
							 | 
						            avg = averaged.detach().clone() | 
					
					
						
						| 
							 | 
						            if self.accumulator_filled > 0: | 
					
					
						
						| 
							 | 
						                averaged = torch.mean(self.accumulator, dim=0) * (acc_count - 1) / acc_count + averaged / acc_count | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            self.accumulator[self.accumulator_index] = avg | 
					
					
						
						| 
							 | 
						            self.accumulator_index += 1 | 
					
					
						
						| 
							 | 
						            if self.accumulator_index >= acc_count: | 
					
					
						
						| 
							 | 
						                self.accumulator_index *= 0 | 
					
					
						
						| 
							 | 
						                if self.accumulator_filled <= 0: | 
					
					
						
						| 
							 | 
						                    self.accumulator_filled += 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return torch.sum(-self.dist.log_prob(averaged)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class ResBlock(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, chan, conv, activation): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.net = nn.Sequential( | 
					
					
						
						| 
							 | 
						            conv(chan, chan, 3, padding=1), | 
					
					
						
						| 
							 | 
						            activation(), | 
					
					
						
						| 
							 | 
						            conv(chan, chan, 3, padding=1), | 
					
					
						
						| 
							 | 
						            activation(), | 
					
					
						
						| 
							 | 
						            conv(chan, chan, 1), | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x): | 
					
					
						
						| 
							 | 
						        return self.net(x) + x | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class UpsampledConv(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, conv, *args, **kwargs): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        assert "stride" in kwargs.keys() | 
					
					
						
						| 
							 | 
						        self.stride = kwargs["stride"] | 
					
					
						
						| 
							 | 
						        del kwargs["stride"] | 
					
					
						
						| 
							 | 
						        self.conv = conv(*args, **kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x): | 
					
					
						
						| 
							 | 
						        up = nn.functional.interpolate(x, scale_factor=self.stride, mode="nearest") | 
					
					
						
						| 
							 | 
						        return self.conv(up) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class DiscreteVAE(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        positional_dims=2, | 
					
					
						
						| 
							 | 
						        num_tokens=512, | 
					
					
						
						| 
							 | 
						        codebook_dim=512, | 
					
					
						
						| 
							 | 
						        num_layers=3, | 
					
					
						
						| 
							 | 
						        num_resnet_blocks=0, | 
					
					
						
						| 
							 | 
						        hidden_dim=64, | 
					
					
						
						| 
							 | 
						        channels=3, | 
					
					
						
						| 
							 | 
						        stride=2, | 
					
					
						
						| 
							 | 
						        kernel_size=4, | 
					
					
						
						| 
							 | 
						        use_transposed_convs=True, | 
					
					
						
						| 
							 | 
						        encoder_norm=False, | 
					
					
						
						| 
							 | 
						        activation="relu", | 
					
					
						
						| 
							 | 
						        smooth_l1_loss=False, | 
					
					
						
						| 
							 | 
						        straight_through=False, | 
					
					
						
						| 
							 | 
						        normalization=None,   | 
					
					
						
						| 
							 | 
						        record_codes=False, | 
					
					
						
						| 
							 | 
						        discretization_loss_averaging_steps=100, | 
					
					
						
						| 
							 | 
						        lr_quantizer_args={}, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        has_resblocks = num_resnet_blocks > 0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.num_tokens = num_tokens | 
					
					
						
						| 
							 | 
						        self.num_layers = num_layers | 
					
					
						
						| 
							 | 
						        self.straight_through = straight_through | 
					
					
						
						| 
							 | 
						        self.positional_dims = positional_dims | 
					
					
						
						| 
							 | 
						        self.discrete_loss = DiscretizationLoss( | 
					
					
						
						| 
							 | 
						            num_tokens, 2, 1 / (num_tokens * 2), discretization_loss_averaging_steps | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        assert positional_dims > 0 and positional_dims < 3   | 
					
					
						
						| 
							 | 
						        if positional_dims == 2: | 
					
					
						
						| 
							 | 
						            conv = nn.Conv2d | 
					
					
						
						| 
							 | 
						            conv_transpose = nn.ConvTranspose2d | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            conv = nn.Conv1d | 
					
					
						
						| 
							 | 
						            conv_transpose = nn.ConvTranspose1d | 
					
					
						
						| 
							 | 
						        if not use_transposed_convs: | 
					
					
						
						| 
							 | 
						            conv_transpose = functools.partial(UpsampledConv, conv) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if activation == "relu": | 
					
					
						
						| 
							 | 
						            act = nn.ReLU | 
					
					
						
						| 
							 | 
						        elif activation == "silu": | 
					
					
						
						| 
							 | 
						            act = nn.SiLU | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            assert NotImplementedError() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        enc_layers = [] | 
					
					
						
						| 
							 | 
						        dec_layers = [] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if num_layers > 0: | 
					
					
						
						| 
							 | 
						            enc_chans = [hidden_dim * 2**i for i in range(num_layers)] | 
					
					
						
						| 
							 | 
						            dec_chans = list(reversed(enc_chans)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            enc_chans = [channels, *enc_chans] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            dec_init_chan = codebook_dim if not has_resblocks else dec_chans[0] | 
					
					
						
						| 
							 | 
						            dec_chans = [dec_init_chan, *dec_chans] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            enc_chans_io, dec_chans_io = map(lambda t: list(zip(t[:-1], t[1:])), (enc_chans, dec_chans)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            pad = (kernel_size - 1) // 2 | 
					
					
						
						| 
							 | 
						            for (enc_in, enc_out), (dec_in, dec_out) in zip(enc_chans_io, dec_chans_io): | 
					
					
						
						| 
							 | 
						                enc_layers.append(nn.Sequential(conv(enc_in, enc_out, kernel_size, stride=stride, padding=pad), act())) | 
					
					
						
						| 
							 | 
						                if encoder_norm: | 
					
					
						
						| 
							 | 
						                    enc_layers.append(nn.GroupNorm(8, enc_out)) | 
					
					
						
						| 
							 | 
						                dec_layers.append( | 
					
					
						
						| 
							 | 
						                    nn.Sequential(conv_transpose(dec_in, dec_out, kernel_size, stride=stride, padding=pad), act()) | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            dec_out_chans = dec_chans[-1] | 
					
					
						
						| 
							 | 
						            innermost_dim = dec_chans[0] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            enc_layers.append(nn.Sequential(conv(channels, hidden_dim, 1), act())) | 
					
					
						
						| 
							 | 
						            dec_out_chans = hidden_dim | 
					
					
						
						| 
							 | 
						            innermost_dim = hidden_dim | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for _ in range(num_resnet_blocks): | 
					
					
						
						| 
							 | 
						            dec_layers.insert(0, ResBlock(innermost_dim, conv, act)) | 
					
					
						
						| 
							 | 
						            enc_layers.append(ResBlock(innermost_dim, conv, act)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if num_resnet_blocks > 0: | 
					
					
						
						| 
							 | 
						            dec_layers.insert(0, conv(codebook_dim, innermost_dim, 1)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        enc_layers.append(conv(innermost_dim, codebook_dim, 1)) | 
					
					
						
						| 
							 | 
						        dec_layers.append(conv(dec_out_chans, channels, 1)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.encoder = nn.Sequential(*enc_layers) | 
					
					
						
						| 
							 | 
						        self.decoder = nn.Sequential(*dec_layers) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.loss_fn = F.smooth_l1_loss if smooth_l1_loss else F.mse_loss | 
					
					
						
						| 
							 | 
						        self.codebook = Quantize(codebook_dim, num_tokens, new_return_order=True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.normalization = normalization | 
					
					
						
						| 
							 | 
						        self.record_codes = record_codes | 
					
					
						
						| 
							 | 
						        if record_codes: | 
					
					
						
						| 
							 | 
						            self.codes = torch.zeros((1228800,), dtype=torch.long) | 
					
					
						
						| 
							 | 
						            self.code_ind = 0 | 
					
					
						
						| 
							 | 
						            self.total_codes = 0 | 
					
					
						
						| 
							 | 
						        self.internal_step = 0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def norm(self, images): | 
					
					
						
						| 
							 | 
						        if not self.normalization is not None: | 
					
					
						
						| 
							 | 
						            return images | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        means, stds = map(lambda t: torch.as_tensor(t).to(images), self.normalization) | 
					
					
						
						| 
							 | 
						        arrange = "c -> () c () ()" if self.positional_dims == 2 else "c -> () c ()" | 
					
					
						
						| 
							 | 
						        means, stds = map(lambda t: rearrange(t, arrange), (means, stds)) | 
					
					
						
						| 
							 | 
						        images = images.clone() | 
					
					
						
						| 
							 | 
						        images.sub_(means).div_(stds) | 
					
					
						
						| 
							 | 
						        return images | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_debug_values(self, step, __): | 
					
					
						
						| 
							 | 
						        if self.record_codes and self.total_codes > 0: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            return {"histogram_codes": self.codes[: self.total_codes]} | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            return {} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @torch.no_grad() | 
					
					
						
						| 
							 | 
						    @eval_decorator | 
					
					
						
						| 
							 | 
						    def get_codebook_indices(self, images): | 
					
					
						
						| 
							 | 
						        img = self.norm(images) | 
					
					
						
						| 
							 | 
						        logits = self.encoder(img).permute((0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1)) | 
					
					
						
						| 
							 | 
						        sampled, codes, _ = self.codebook(logits) | 
					
					
						
						| 
							 | 
						        self.log_codes(codes) | 
					
					
						
						| 
							 | 
						        return codes | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def decode(self, img_seq): | 
					
					
						
						| 
							 | 
						        self.log_codes(img_seq) | 
					
					
						
						| 
							 | 
						        if hasattr(self.codebook, "embed_code"): | 
					
					
						
						| 
							 | 
						            image_embeds = self.codebook.embed_code(img_seq) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            image_embeds = F.embedding(img_seq, self.codebook.codebook) | 
					
					
						
						| 
							 | 
						        b, n, d = image_embeds.shape | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        kwargs = {} | 
					
					
						
						| 
							 | 
						        if self.positional_dims == 1: | 
					
					
						
						| 
							 | 
						            arrange = "b n d -> b d n" | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            h = w = int(sqrt(n)) | 
					
					
						
						| 
							 | 
						            arrange = "b (h w) d -> b d h w" | 
					
					
						
						| 
							 | 
						            kwargs = {"h": h, "w": w} | 
					
					
						
						| 
							 | 
						        image_embeds = rearrange(image_embeds, arrange, **kwargs) | 
					
					
						
						| 
							 | 
						        images = [image_embeds] | 
					
					
						
						| 
							 | 
						        for layer in self.decoder: | 
					
					
						
						| 
							 | 
						            images.append(layer(images[-1])) | 
					
					
						
						| 
							 | 
						        return images[-1], images[-2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def infer(self, img): | 
					
					
						
						| 
							 | 
						        img = self.norm(img) | 
					
					
						
						| 
							 | 
						        logits = self.encoder(img).permute((0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1)) | 
					
					
						
						| 
							 | 
						        sampled, codes, commitment_loss = self.codebook(logits) | 
					
					
						
						| 
							 | 
						        return self.decode(codes) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def forward(self, img): | 
					
					
						
						| 
							 | 
						        img = self.norm(img) | 
					
					
						
						| 
							 | 
						        logits = self.encoder(img).permute((0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1)) | 
					
					
						
						| 
							 | 
						        sampled, codes, commitment_loss = self.codebook(logits) | 
					
					
						
						| 
							 | 
						        sampled = sampled.permute((0, 3, 1, 2) if len(img.shape) == 4 else (0, 2, 1)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.training: | 
					
					
						
						| 
							 | 
						            out = sampled | 
					
					
						
						| 
							 | 
						            for d in self.decoder: | 
					
					
						
						| 
							 | 
						                out = d(out) | 
					
					
						
						| 
							 | 
						            self.log_codes(codes) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            out, _ = self.decode(codes) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        out = out[..., :img.shape[-1]] | 
					
					
						
						| 
							 | 
						        recon_loss = self.loss_fn(img, out, reduction="mean") | 
					
					
						
						| 
							 | 
						        ssim_loss = torch.zeros(size=(1,)).cuda() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return recon_loss, ssim_loss, commitment_loss, out | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def log_codes(self, codes): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.record_codes and self.internal_step % 10 == 0: | 
					
					
						
						| 
							 | 
						            codes = codes.flatten() | 
					
					
						
						| 
							 | 
						            l = codes.shape[0] | 
					
					
						
						| 
							 | 
						            i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l | 
					
					
						
						| 
							 | 
						            self.codes[i : i + l] = codes.cpu() | 
					
					
						
						| 
							 | 
						            self.code_ind = self.code_ind + l | 
					
					
						
						| 
							 | 
						            if self.code_ind >= self.codes.shape[0]: | 
					
					
						
						| 
							 | 
						                self.code_ind = 0 | 
					
					
						
						| 
							 | 
						            self.total_codes += 1 | 
					
					
						
						| 
							 | 
						        self.internal_step += 1 | 
					
					
						
						| 
							 | 
						
 |