Spaces:
Runtime error
Runtime error
Create swtich_app_multi_output.py
Browse files- swtich_app_multi_output.py +444 -0
swtich_app_multi_output.py
ADDED
|
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import torch
|
| 3 |
+
import cv2
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
from huggingface_hub import snapshot_download
|
| 7 |
+
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
| 8 |
+
from diffusers.utils import load_image
|
| 9 |
+
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
|
| 10 |
+
from kolors.models.modeling_chatglm import ChatGLMModel
|
| 11 |
+
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
| 12 |
+
from kolors.models.controlnet import ControlNetModel
|
| 13 |
+
from diffusers import AutoencoderKL
|
| 14 |
+
from kolors.models.unet_2d_condition import UNet2DConditionModel
|
| 15 |
+
from diffusers import EulerDiscreteScheduler
|
| 16 |
+
from PIL import Image
|
| 17 |
+
from annotator.midas import MidasDetector
|
| 18 |
+
from annotator.dwpose import DWposeDetector
|
| 19 |
+
from annotator.util import resize_image, HWC3
|
| 20 |
+
|
| 21 |
+
device = "cuda"
|
| 22 |
+
|
| 23 |
+
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
|
| 24 |
+
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
|
| 25 |
+
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
|
| 26 |
+
ckpt_dir_ipa = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
|
| 27 |
+
ckpt_dir_pose = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Pose")
|
| 28 |
+
'''
|
| 29 |
+
ckpt_dir = "Kolors"
|
| 30 |
+
ckpt_dir_depth = "Kolors-ControlNet-Depth"
|
| 31 |
+
ckpt_dir_canny = "Kolors-ControlNet-Canny"
|
| 32 |
+
ckpt_dir_ipa = "Kolors-IP-Adapter-Plus"
|
| 33 |
+
ckpt_dir_pose = "Kolors-ControlNet-Pose"
|
| 34 |
+
'''
|
| 35 |
+
|
| 36 |
+
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
|
| 37 |
+
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
| 38 |
+
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
|
| 39 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
| 40 |
+
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
| 41 |
+
|
| 42 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_ipa}/image_encoder', ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
|
| 43 |
+
ip_img_size = 336
|
| 44 |
+
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
|
| 45 |
+
|
| 46 |
+
model_midas = MidasDetector()
|
| 47 |
+
model_dwpose = DWposeDetector()
|
| 48 |
+
|
| 49 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 50 |
+
MAX_IMAGE_SIZE = 512
|
| 51 |
+
|
| 52 |
+
def process_canny_condition(image, canny_threods=[100, 200]):
|
| 53 |
+
np_image = image.copy()
|
| 54 |
+
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
|
| 55 |
+
np_image = np_image[:, :, None]
|
| 56 |
+
np_image = np.concatenate([np_image, np_image, np_image], axis=2)
|
| 57 |
+
np_image = HWC3(np_image)
|
| 58 |
+
return Image.fromarray(np_image)
|
| 59 |
+
|
| 60 |
+
def process_depth_condition_midas(img, res=1024):
|
| 61 |
+
h, w, _ = img.shape
|
| 62 |
+
img = resize_image(HWC3(img), res)
|
| 63 |
+
result = HWC3(model_midas(img))
|
| 64 |
+
result = cv2.resize(result, (w, h))
|
| 65 |
+
return Image.fromarray(result)
|
| 66 |
+
|
| 67 |
+
def process_dwpose_condition(image, res=1024):
|
| 68 |
+
h, w, _ = image.shape
|
| 69 |
+
img = resize_image(HWC3(image), res)
|
| 70 |
+
out_res, out_img = model_dwpose(image)
|
| 71 |
+
result = HWC3(out_img)
|
| 72 |
+
result = cv2.resize(result, (w, h))
|
| 73 |
+
return Image.fromarray(result)
|
| 74 |
+
|
| 75 |
+
def infer_canny(prompt,
|
| 76 |
+
image=None,
|
| 77 |
+
ipa_img=None,
|
| 78 |
+
negative_prompt="nsfw๏ผ่ธ้จ้ดๅฝฑ๏ผไฝๅ่พจ็๏ผ็ณ็ณ็่งฃๅ็ปๆใ็ณ็ณ็ๆ๏ผ็ผบๅคฑๆๆใ่ดจ้ๆๅทฎใไฝ่ดจ้ใjpegไผชๅฝฑใๆจก็ณใ็ณ็ณ๏ผ้ป่ธ๏ผ้่น็ฏ",
|
| 79 |
+
seed=66,
|
| 80 |
+
randomize_seed=False,
|
| 81 |
+
guidance_scale=5.0,
|
| 82 |
+
num_inference_steps=50,
|
| 83 |
+
controlnet_conditioning_scale=0.5,
|
| 84 |
+
control_guidance_end=0.9,
|
| 85 |
+
strength=1.0,
|
| 86 |
+
ip_scale=0.5,
|
| 87 |
+
num_images=1):
|
| 88 |
+
if randomize_seed:
|
| 89 |
+
seed = random.randint(0, MAX_SEED)
|
| 90 |
+
#generator = torch.Generator().manual_seed(seed)
|
| 91 |
+
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
| 92 |
+
pipe = pipe_canny.to("cuda")
|
| 93 |
+
pipe.set_ip_adapter_scale([ip_scale])
|
| 94 |
+
condi_img = process_canny_condition(np.array(init_image))
|
| 95 |
+
images = []
|
| 96 |
+
for i in range(num_images):
|
| 97 |
+
generator = torch.Generator().manual_seed(seed + i)
|
| 98 |
+
image = pipe(
|
| 99 |
+
prompt=prompt,
|
| 100 |
+
image=init_image,
|
| 101 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 102 |
+
control_guidance_end=control_guidance_end,
|
| 103 |
+
ip_adapter_image=[ipa_img],
|
| 104 |
+
strength=strength,
|
| 105 |
+
control_image=condi_img,
|
| 106 |
+
negative_prompt=negative_prompt,
|
| 107 |
+
num_inference_steps=num_inference_steps,
|
| 108 |
+
guidance_scale=guidance_scale,
|
| 109 |
+
num_images_per_prompt=1,
|
| 110 |
+
generator=generator,
|
| 111 |
+
).images[0]
|
| 112 |
+
images.append(image)
|
| 113 |
+
return [condi_img] + images, seed
|
| 114 |
+
|
| 115 |
+
def infer_depth(prompt,
|
| 116 |
+
image=None,
|
| 117 |
+
ipa_img=None,
|
| 118 |
+
negative_prompt="nsfw๏ผ่ธ้จ้ดๅฝฑ๏ผไฝๅ่พจ็๏ผ็ณ็ณ็่งฃๅ็ปๆใ็ณ็ณ็ๆ๏ผ็ผบๅคฑๆๆใ่ดจ้ๆๅทฎใไฝ่ดจ้ใjpegไผชๅฝฑใๆจก็ณใ็ณ็ณ๏ผ้ป่ธ๏ฟฝ๏ฟฝ้่น็ฏ",
|
| 119 |
+
seed=66,
|
| 120 |
+
randomize_seed=False,
|
| 121 |
+
guidance_scale=5.0,
|
| 122 |
+
num_inference_steps=50,
|
| 123 |
+
controlnet_conditioning_scale=0.5,
|
| 124 |
+
control_guidance_end=0.9,
|
| 125 |
+
strength=1.0,
|
| 126 |
+
ip_scale=0.5,
|
| 127 |
+
num_images=1):
|
| 128 |
+
if randomize_seed:
|
| 129 |
+
seed = random.randint(0, MAX_SEED)
|
| 130 |
+
#generator = torch.Generator().manual_seed(seed)
|
| 131 |
+
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
| 132 |
+
pipe = pipe_depth.to("cuda")
|
| 133 |
+
pipe.set_ip_adapter_scale([ip_scale])
|
| 134 |
+
condi_img = process_depth_condition_midas(np.array(init_image), MAX_IMAGE_SIZE)
|
| 135 |
+
images = []
|
| 136 |
+
for i in range(num_images):
|
| 137 |
+
generator = torch.Generator().manual_seed(seed + i)
|
| 138 |
+
image = pipe(
|
| 139 |
+
prompt=prompt,
|
| 140 |
+
image=init_image,
|
| 141 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 142 |
+
control_guidance_end=control_guidance_end,
|
| 143 |
+
ip_adapter_image=[ipa_img],
|
| 144 |
+
strength=strength,
|
| 145 |
+
control_image=condi_img,
|
| 146 |
+
negative_prompt=negative_prompt,
|
| 147 |
+
num_inference_steps=num_inference_steps,
|
| 148 |
+
guidance_scale=guidance_scale,
|
| 149 |
+
num_images_per_prompt=1,
|
| 150 |
+
generator=generator,
|
| 151 |
+
).images[0]
|
| 152 |
+
images.append(image)
|
| 153 |
+
return [condi_img] + images, seed
|
| 154 |
+
|
| 155 |
+
def infer_pose(prompt,
|
| 156 |
+
image=None,
|
| 157 |
+
ipa_img=None,
|
| 158 |
+
negative_prompt="nsfw๏ผ่ธ้จ้ดๅฝฑ๏ผไฝๅ่พจ็๏ผjpegไผชๅฝฑใๆจก็ณใ็ณ็ณ๏ผ้ป่ธ๏ผ้่น็ฏ",
|
| 159 |
+
seed=66,
|
| 160 |
+
randomize_seed=False,
|
| 161 |
+
guidance_scale=5.0,
|
| 162 |
+
num_inference_steps=50,
|
| 163 |
+
controlnet_conditioning_scale=0.5,
|
| 164 |
+
control_guidance_end=0.9,
|
| 165 |
+
strength=1.0,
|
| 166 |
+
ip_scale=0.5,
|
| 167 |
+
num_images=1):
|
| 168 |
+
if randomize_seed:
|
| 169 |
+
seed = random.randint(0, MAX_SEED)
|
| 170 |
+
#generator = torch.Generator().manual_seed(seed)
|
| 171 |
+
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
| 172 |
+
pipe = pipe_pose.to("cuda")
|
| 173 |
+
pipe.set_ip_adapter_scale([ip_scale])
|
| 174 |
+
condi_img = process_dwpose_condition(np.array(init_image), MAX_IMAGE_SIZE)
|
| 175 |
+
images = []
|
| 176 |
+
for i in range(num_images):
|
| 177 |
+
generator = torch.Generator().manual_seed(seed + i)
|
| 178 |
+
image = pipe(
|
| 179 |
+
prompt=prompt,
|
| 180 |
+
image=init_image,
|
| 181 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 182 |
+
control_guidance_end=control_guidance_end,
|
| 183 |
+
ip_adapter_image=[ipa_img],
|
| 184 |
+
strength=strength,
|
| 185 |
+
control_image=condi_img,
|
| 186 |
+
negative_prompt=negative_prompt,
|
| 187 |
+
num_inference_steps=num_inference_steps,
|
| 188 |
+
guidance_scale=guidance_scale,
|
| 189 |
+
num_images_per_prompt=1,
|
| 190 |
+
generator=generator,
|
| 191 |
+
).images[0]
|
| 192 |
+
images.append(image)
|
| 193 |
+
return [condi_img] + images, seed
|
| 194 |
+
|
| 195 |
+
canny_examples = [
|
| 196 |
+
["ไธไธช็บข่ฒๅคดๅ็ๅฅณๅญฉ๏ผๅฏ็พ้ฃๆฏ๏ผๆธ
ๆฐๆไบฎ๏ผๆ้ฉณ็ๅ
ๅฝฑ๏ผๆๅฅฝ็่ดจ้๏ผ่ถ
็ป่๏ผ8K็ป่ดจ",
|
| 197 |
+
"image/woman_2.png", "image/2.png", 3],
|
| 198 |
+
]
|
| 199 |
+
|
| 200 |
+
depth_examples = [
|
| 201 |
+
["ไธไธชๆผไบฎ็ๅฅณๅญฉ๏ผๆๅฅฝ็่ดจ้๏ผ่ถ
็ป่๏ผ8K็ป่ดจ",
|
| 202 |
+
"image/1.png", "image/woman_1.png", 3],
|
| 203 |
+
]
|
| 204 |
+
|
| 205 |
+
pose_examples = [
|
| 206 |
+
["ไธไฝ็ฉฟ็็ดซ่ฒๆณกๆณก่ข่ฟ่กฃ่ฃใๆด็็ๅ ๅ็ฝ่ฒ่พไธๆๅฅ็ๅฅณๅญฉ๏ผ่ถ
้ซๅ่พจ็๏ผๆไฝณๅ่ดจ๏ผ8k็ป่ดจ",
|
| 207 |
+
"image/woman_3.png", "image/woman_4.png", 3],
|
| 208 |
+
]
|
| 209 |
+
|
| 210 |
+
css = """
|
| 211 |
+
#col-left {
|
| 212 |
+
margin: 0 auto;
|
| 213 |
+
max-width: 600px;
|
| 214 |
+
}
|
| 215 |
+
#col-right {
|
| 216 |
+
margin: 0 auto;
|
| 217 |
+
max-width: 750px;
|
| 218 |
+
}
|
| 219 |
+
#button {
|
| 220 |
+
color: blue;
|
| 221 |
+
}
|
| 222 |
+
"""
|
| 223 |
+
|
| 224 |
+
def load_description(fp):
|
| 225 |
+
with open(fp, 'r', encoding='utf-8') as f:
|
| 226 |
+
content = f.read()
|
| 227 |
+
return content
|
| 228 |
+
|
| 229 |
+
def clear_resources():
|
| 230 |
+
global pipe_canny, pipe_depth, pipe_pose
|
| 231 |
+
if 'pipe_canny' in globals():
|
| 232 |
+
del pipe_canny
|
| 233 |
+
if 'pipe_depth' in globals():
|
| 234 |
+
del pipe_depth
|
| 235 |
+
if 'pipe_pose' in globals():
|
| 236 |
+
del pipe_pose
|
| 237 |
+
torch.cuda.empty_cache()
|
| 238 |
+
|
| 239 |
+
def load_canny_pipeline():
|
| 240 |
+
global pipe_canny
|
| 241 |
+
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
|
| 242 |
+
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
|
| 243 |
+
vae=vae,
|
| 244 |
+
controlnet=controlnet_canny,
|
| 245 |
+
text_encoder=text_encoder,
|
| 246 |
+
tokenizer=tokenizer,
|
| 247 |
+
unet=unet,
|
| 248 |
+
scheduler=scheduler,
|
| 249 |
+
image_encoder=image_encoder,
|
| 250 |
+
feature_extractor=clip_image_processor,
|
| 251 |
+
force_zeros_for_empty_prompt=False
|
| 252 |
+
)
|
| 253 |
+
pipe_canny.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])
|
| 254 |
+
|
| 255 |
+
def load_depth_pipeline():
|
| 256 |
+
global pipe_depth
|
| 257 |
+
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
|
| 258 |
+
pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
|
| 259 |
+
vae=vae,
|
| 260 |
+
controlnet=controlnet_depth,
|
| 261 |
+
text_encoder=text_encoder,
|
| 262 |
+
tokenizer=tokenizer,
|
| 263 |
+
unet=unet,
|
| 264 |
+
scheduler=scheduler,
|
| 265 |
+
image_encoder=image_encoder,
|
| 266 |
+
feature_extractor=clip_image_processor,
|
| 267 |
+
force_zeros_for_empty_prompt=False
|
| 268 |
+
)
|
| 269 |
+
pipe_depth.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])
|
| 270 |
+
|
| 271 |
+
def load_pose_pipeline():
|
| 272 |
+
global pipe_pose
|
| 273 |
+
controlnet_pose = ControlNetModel.from_pretrained(f"{ckpt_dir_pose}", revision=None).half().to(device)
|
| 274 |
+
pipe_pose = StableDiffusionXLControlNetImg2ImgPipeline(
|
| 275 |
+
vae=vae,
|
| 276 |
+
controlnet=controlnet_pose,
|
| 277 |
+
text_encoder=text_encoder,
|
| 278 |
+
tokenizer=tokenizer,
|
| 279 |
+
unet=unet,
|
| 280 |
+
scheduler=scheduler,
|
| 281 |
+
image_encoder=image_encoder,
|
| 282 |
+
feature_extractor=clip_image_processor,
|
| 283 |
+
force_zeros_for_empty_prompt=False
|
| 284 |
+
)
|
| 285 |
+
pipe_pose.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])
|
| 286 |
+
|
| 287 |
+
def switch_to_canny():
|
| 288 |
+
clear_resources()
|
| 289 |
+
load_canny_pipeline()
|
| 290 |
+
return gr.update(visible=True)
|
| 291 |
+
|
| 292 |
+
def switch_to_depth():
|
| 293 |
+
clear_resources()
|
| 294 |
+
load_depth_pipeline()
|
| 295 |
+
return gr.update(visible=True)
|
| 296 |
+
|
| 297 |
+
def switch_to_pose():
|
| 298 |
+
clear_resources()
|
| 299 |
+
load_pose_pipeline()
|
| 300 |
+
return gr.update(visible=True)
|
| 301 |
+
|
| 302 |
+
with gr.Blocks(css=css) as Kolors:
|
| 303 |
+
gr.HTML(load_description("assets/title.md"))
|
| 304 |
+
with gr.Row():
|
| 305 |
+
with gr.Column(elem_id="col-left"):
|
| 306 |
+
with gr.Row():
|
| 307 |
+
prompt = gr.Textbox(
|
| 308 |
+
label="Prompt",
|
| 309 |
+
placeholder="Enter your prompt",
|
| 310 |
+
lines=2
|
| 311 |
+
)
|
| 312 |
+
with gr.Row():
|
| 313 |
+
image = gr.Image(label="Image", type="pil")
|
| 314 |
+
ipa_image = gr.Image(label="IP-Adapter-Image", type="pil")
|
| 315 |
+
with gr.Row():
|
| 316 |
+
num_images = gr.Slider(
|
| 317 |
+
label="Number of Images",
|
| 318 |
+
minimum=1,
|
| 319 |
+
maximum=10,
|
| 320 |
+
step=1,
|
| 321 |
+
value=1,
|
| 322 |
+
)
|
| 323 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 324 |
+
negative_prompt = gr.Textbox(
|
| 325 |
+
label="Negative prompt",
|
| 326 |
+
placeholder="Enter a negative prompt",
|
| 327 |
+
visible=True,
|
| 328 |
+
value="nsfw๏ผ่ธ้จ้ดๅฝฑ๏ผไฝๅ่พจ็๏ผ็ณ็ณ็่งฃๅ็ปๆใ็ณ็ณ็ๆ๏ผ็ผบๅคฑๆๆใ่ดจ้ๆๅทฎใไฝ่ดจ้ใjpegไผชๅฝฑใๆจก็ณใ็ณ็ณ๏ผ้ป่ธ๏ผ้่น็ฏ"
|
| 329 |
+
)
|
| 330 |
+
seed = gr.Slider(
|
| 331 |
+
label="Seed",
|
| 332 |
+
minimum=0,
|
| 333 |
+
maximum=MAX_SEED,
|
| 334 |
+
step=1,
|
| 335 |
+
value=0,
|
| 336 |
+
)
|
| 337 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 338 |
+
with gr.Row():
|
| 339 |
+
guidance_scale = gr.Slider(
|
| 340 |
+
label="Guidance scale",
|
| 341 |
+
minimum=0.0,
|
| 342 |
+
maximum=10.0,
|
| 343 |
+
step=0.1,
|
| 344 |
+
value=5.0,
|
| 345 |
+
)
|
| 346 |
+
num_inference_steps = gr.Slider(
|
| 347 |
+
label="Number of inference steps",
|
| 348 |
+
minimum=10,
|
| 349 |
+
maximum=50,
|
| 350 |
+
step=1,
|
| 351 |
+
value=30,
|
| 352 |
+
)
|
| 353 |
+
with gr.Row():
|
| 354 |
+
controlnet_conditioning_scale = gr.Slider(
|
| 355 |
+
label="Controlnet Conditioning Scale",
|
| 356 |
+
minimum=0.0,
|
| 357 |
+
maximum=1.0,
|
| 358 |
+
step=0.1,
|
| 359 |
+
value=0.5,
|
| 360 |
+
)
|
| 361 |
+
control_guidance_end = gr.Slider(
|
| 362 |
+
label="Control Guidance End",
|
| 363 |
+
minimum=0.0,
|
| 364 |
+
maximum=1.0,
|
| 365 |
+
step=0.1,
|
| 366 |
+
value=0.9,
|
| 367 |
+
)
|
| 368 |
+
with gr.Row():
|
| 369 |
+
strength = gr.Slider(
|
| 370 |
+
label="Strength",
|
| 371 |
+
minimum=0.0,
|
| 372 |
+
maximum=1.0,
|
| 373 |
+
step=0.1,
|
| 374 |
+
value=1.0,
|
| 375 |
+
)
|
| 376 |
+
ip_scale = gr.Slider(
|
| 377 |
+
label="IP_Scale",
|
| 378 |
+
minimum=0.0,
|
| 379 |
+
maximum=1.0,
|
| 380 |
+
step=0.1,
|
| 381 |
+
value=0.5,
|
| 382 |
+
)
|
| 383 |
+
with gr.Row():
|
| 384 |
+
canny_button = gr.Button("Canny", elem_id="button")
|
| 385 |
+
depth_button = gr.Button("Depth", elem_id="button")
|
| 386 |
+
pose_button = gr.Button("Pose", elem_id="button")
|
| 387 |
+
|
| 388 |
+
with gr.Column(elem_id="col-right"):
|
| 389 |
+
result = gr.Gallery(label="Result", show_label=False, columns=3)
|
| 390 |
+
seed_used = gr.Number(label="Seed Used")
|
| 391 |
+
|
| 392 |
+
with gr.Row():
|
| 393 |
+
gr.Examples(
|
| 394 |
+
fn=infer_canny,
|
| 395 |
+
examples=canny_examples,
|
| 396 |
+
inputs=[prompt, image, ipa_image, num_images],
|
| 397 |
+
outputs=[result, seed_used],
|
| 398 |
+
label="Canny"
|
| 399 |
+
)
|
| 400 |
+
with gr.Row():
|
| 401 |
+
gr.Examples(
|
| 402 |
+
fn=infer_depth,
|
| 403 |
+
examples=depth_examples,
|
| 404 |
+
inputs=[prompt, image, ipa_image, num_images],
|
| 405 |
+
outputs=[result, seed_used],
|
| 406 |
+
label="Depth"
|
| 407 |
+
)
|
| 408 |
+
with gr.Row():
|
| 409 |
+
gr.Examples(
|
| 410 |
+
fn=infer_pose,
|
| 411 |
+
examples=pose_examples,
|
| 412 |
+
inputs=[prompt, image, ipa_image, num_images],
|
| 413 |
+
outputs=[result, seed_used],
|
| 414 |
+
label="Pose"
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
canny_button.click(
|
| 418 |
+
fn=switch_to_canny,
|
| 419 |
+
outputs=[canny_button]
|
| 420 |
+
).then(
|
| 421 |
+
fn=infer_canny,
|
| 422 |
+
inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale, num_images],
|
| 423 |
+
outputs=[result, seed_used]
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
depth_button.click(
|
| 427 |
+
fn=switch_to_depth,
|
| 428 |
+
outputs=[depth_button]
|
| 429 |
+
).then(
|
| 430 |
+
fn=infer_depth,
|
| 431 |
+
inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale, num_images],
|
| 432 |
+
outputs=[result, seed_used]
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
pose_button.click(
|
| 436 |
+
fn=switch_to_pose,
|
| 437 |
+
outputs=[pose_button]
|
| 438 |
+
).then(
|
| 439 |
+
fn=infer_pose,
|
| 440 |
+
inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale, num_images],
|
| 441 |
+
outputs=[result, seed_used]
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
Kolors.queue().launch(debug=True, share=True)
|