Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import shutil
|
6 |
+
|
7 |
+
from tqdm import tqdm
|
8 |
+
import re
|
9 |
+
|
10 |
+
from donut import DonutModel
|
11 |
+
import torch
|
12 |
+
from PIL import Image
|
13 |
+
import gradio as gr
|
14 |
+
|
15 |
+
#from train import *
|
16 |
+
en_model_path = "question_generator_by_en_on_pic"
|
17 |
+
#zh_model_path = "question_generator_by_zh_on_pic"
|
18 |
+
|
19 |
+
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
20 |
+
en_pretrained_model = DonutModel.from_pretrained(en_model_path)
|
21 |
+
#zh_pretrained_model = DonutModel.from_pretrained(zh_model_path)
|
22 |
+
|
23 |
+
if torch.cuda.is_available():
|
24 |
+
en_pretrained_model.half()
|
25 |
+
device = torch.device("cuda")
|
26 |
+
en_pretrained_model.to(device)
|
27 |
+
|
28 |
+
'''
|
29 |
+
if torch.cuda.is_available():
|
30 |
+
zh_pretrained_model.half()
|
31 |
+
device = torch.device("cuda")
|
32 |
+
zh_pretrained_model.to(device)
|
33 |
+
'''
|
34 |
+
|
35 |
+
en_pretrained_model.eval()
|
36 |
+
#zh_pretrained_model.eval()
|
37 |
+
print("have load !")
|
38 |
+
|
39 |
+
def demo_process_vqa(input_img, question):
|
40 |
+
#global pretrained_model, task_prompt, task_name
|
41 |
+
#global zh_pretrained_model, en_pretrained_model, task_prompt, task_name
|
42 |
+
#input_img = Image.fromarray(input_img)
|
43 |
+
global en_pretrained_model, task_prompt
|
44 |
+
user_prompt = task_prompt.replace("{user_input}", question)
|
45 |
+
output = en_pretrained_model.inference(input_img, prompt=user_prompt)["predictions"][0]
|
46 |
+
'''
|
47 |
+
if lang == "en":
|
48 |
+
output = en_pretrained_model.inference(input_img, prompt=user_prompt)["predictions"][0]
|
49 |
+
else:
|
50 |
+
output = zh_pretrained_model.inference(input_img, prompt=user_prompt)["predictions"][0]
|
51 |
+
'''
|
52 |
+
req = {
|
53 |
+
"question": output["answer"],
|
54 |
+
"answer": output["question"]
|
55 |
+
}
|
56 |
+
return req
|
57 |
+
|
58 |
+
'''
|
59 |
+
img_path = "imgs/en_img.png"
|
60 |
+
demo_process_vqa(Image.open(img_path), "605-7227", "en")
|
61 |
+
|
62 |
+
img_path = "imgs/zh_img.png"
|
63 |
+
demo_process_vqa(Image.open(img_path), "零钱通", "zh")
|
64 |
+
'''
|
65 |
+
|
66 |
+
example_sample = [["en_img.png", "605-7227"]]
|
67 |
+
|
68 |
+
demo=gr.Interface(fn=demo_process_vqa, inputs=['image','text'],
|
69 |
+
outputs=["json"],
|
70 |
+
examples=example_sample if example_sample else None,
|
71 |
+
cache_examples = False
|
72 |
+
)
|
73 |
+
demo.launch(share=False)
|