Spaces:
Runtime error
Runtime error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import math | |
| from typing import Tuple | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d | |
| class MaskDownSampler(nn.Module): | |
| """ | |
| Progressively downsample a mask by total_stride, each time by stride. | |
| Note that LayerNorm is applied per *token*, like in ViT. | |
| With each downsample (by a factor stride**2), channel capacity increases by the same factor. | |
| In the end, we linearly project to embed_dim channels. | |
| """ | |
| def __init__( | |
| self, | |
| embed_dim=256, | |
| kernel_size=4, | |
| stride=4, | |
| padding=0, | |
| total_stride=16, | |
| activation=nn.GELU, | |
| ): | |
| super().__init__() | |
| num_layers = int(math.log2(total_stride) // math.log2(stride)) | |
| assert stride**num_layers == total_stride | |
| self.encoder = nn.Sequential() | |
| mask_in_chans, mask_out_chans = 1, 1 | |
| for _ in range(num_layers): | |
| mask_out_chans = mask_in_chans * (stride**2) | |
| self.encoder.append( | |
| nn.Conv2d( | |
| mask_in_chans, | |
| mask_out_chans, | |
| kernel_size=kernel_size, | |
| stride=stride, | |
| padding=padding, | |
| ) | |
| ) | |
| self.encoder.append(LayerNorm2d(mask_out_chans)) | |
| self.encoder.append(activation()) | |
| mask_in_chans = mask_out_chans | |
| self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1)) | |
| def forward(self, x): | |
| return self.encoder(x) | |
| # Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt) | |
| class CXBlock(nn.Module): | |
| r"""ConvNeXt Block. There are two equivalent implementations: | |
| (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) | |
| (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back | |
| We use (2) as we find it slightly faster in PyTorch | |
| Args: | |
| dim (int): Number of input channels. | |
| drop_path (float): Stochastic depth rate. Default: 0.0 | |
| layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| kernel_size=7, | |
| padding=3, | |
| drop_path=0.0, | |
| layer_scale_init_value=1e-6, | |
| use_dwconv=True, | |
| ): | |
| super().__init__() | |
| self.dwconv = nn.Conv2d( | |
| dim, | |
| dim, | |
| kernel_size=kernel_size, | |
| padding=padding, | |
| groups=dim if use_dwconv else 1, | |
| ) # depthwise conv | |
| self.norm = LayerNorm2d(dim, eps=1e-6) | |
| self.pwconv1 = nn.Linear( | |
| dim, 4 * dim | |
| ) # pointwise/1x1 convs, implemented with linear layers | |
| self.act = nn.GELU() | |
| self.pwconv2 = nn.Linear(4 * dim, dim) | |
| self.gamma = ( | |
| nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) | |
| if layer_scale_init_value > 0 | |
| else None | |
| ) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
| def forward(self, x): | |
| input = x | |
| x = self.dwconv(x) | |
| x = self.norm(x) | |
| x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) | |
| x = self.pwconv1(x) | |
| x = self.act(x) | |
| x = self.pwconv2(x) | |
| if self.gamma is not None: | |
| x = self.gamma * x | |
| x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) | |
| x = input + self.drop_path(x) | |
| return x | |
| class Fuser(nn.Module): | |
| def __init__(self, layer, num_layers, dim=None, input_projection=False): | |
| super().__init__() | |
| self.proj = nn.Identity() | |
| self.layers = get_clones(layer, num_layers) | |
| if input_projection: | |
| assert dim is not None | |
| self.proj = nn.Conv2d(dim, dim, kernel_size=1) | |
| def forward(self, x): | |
| # normally x: (N, C, H, W) | |
| x = self.proj(x) | |
| for layer in self.layers: | |
| x = layer(x) | |
| return x | |
| class MemoryEncoder(nn.Module): | |
| def __init__( | |
| self, | |
| out_dim, | |
| mask_downsampler, | |
| fuser, | |
| position_encoding, | |
| in_dim=256, # in_dim of pix_feats | |
| ): | |
| super().__init__() | |
| self.mask_downsampler = mask_downsampler | |
| self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1) | |
| self.fuser = fuser | |
| self.position_encoding = position_encoding | |
| self.out_proj = nn.Identity() | |
| if out_dim != in_dim: | |
| self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1) | |
| def forward( | |
| self, | |
| pix_feat: torch.Tensor, | |
| masks: torch.Tensor, | |
| skip_mask_sigmoid: bool = False, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| ## Process masks | |
| # sigmoid, so that less domain shift from gt masks which are bool | |
| if not skip_mask_sigmoid: | |
| masks = F.sigmoid(masks) | |
| masks = self.mask_downsampler(masks) | |
| ## Fuse pix_feats and downsampled masks | |
| # in case the visual features are on CPU, cast them to CUDA | |
| pix_feat = pix_feat.to(masks.device) | |
| x = self.pix_feat_proj(pix_feat) | |
| x = x + masks | |
| x = self.fuser(x) | |
| x = self.out_proj(x) | |
| pos = self.position_encoding(x).to(x.dtype) | |
| return {"vision_features": x, "vision_pos_enc": [pos]} |