Spaces:
Runtime error
Runtime error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import copy | |
| from typing import Tuple | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from sam2.utils.misc import mask_to_box | |
| def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num): | |
| """ | |
| Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs` | |
| that are temporally closest to the current frame at `frame_idx`. Here, we take | |
| - a) the closest conditioning frame before `frame_idx` (if any); | |
| - b) the closest conditioning frame after `frame_idx` (if any); | |
| - c) any other temporally closest conditioning frames until reaching a total | |
| of `max_cond_frame_num` conditioning frames. | |
| Outputs: | |
| - selected_outputs: selected items (keys & values) from `cond_frame_outputs`. | |
| - unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`. | |
| """ | |
| if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num: | |
| selected_outputs = cond_frame_outputs | |
| unselected_outputs = {} | |
| else: | |
| assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames" | |
| selected_outputs = {} | |
| # the closest conditioning frame before `frame_idx` (if any) | |
| idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None) | |
| if idx_before is not None: | |
| selected_outputs[idx_before] = cond_frame_outputs[idx_before] | |
| # the closest conditioning frame after `frame_idx` (if any) | |
| idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None) | |
| if idx_after is not None: | |
| selected_outputs[idx_after] = cond_frame_outputs[idx_after] | |
| # add other temporally closest conditioning frames until reaching a total | |
| # of `max_cond_frame_num` conditioning frames. | |
| num_remain = max_cond_frame_num - len(selected_outputs) | |
| inds_remain = sorted( | |
| (t for t in cond_frame_outputs if t not in selected_outputs), | |
| key=lambda x: abs(x - frame_idx), | |
| )[:num_remain] | |
| selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain) | |
| unselected_outputs = { | |
| t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs | |
| } | |
| return selected_outputs, unselected_outputs | |
| def get_1d_sine_pe(pos_inds, dim, temperature=10000): | |
| """ | |
| Get 1D sine positional embedding as in the original Transformer paper. | |
| """ | |
| pe_dim = dim // 2 | |
| dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device) | |
| dim_t = temperature ** (2 * (dim_t // 2) / pe_dim) | |
| pos_embed = pos_inds.unsqueeze(-1) / dim_t | |
| pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1) | |
| return pos_embed | |
| def get_activation_fn(activation): | |
| """Return an activation function given a string""" | |
| if activation == "relu": | |
| return F.relu | |
| if activation == "gelu": | |
| return F.gelu | |
| if activation == "glu": | |
| return F.glu | |
| raise RuntimeError(f"activation should be relu/gelu, not {activation}.") | |
| def get_clones(module, N): | |
| return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
| class DropPath(nn.Module): | |
| # adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py | |
| def __init__(self, drop_prob=0.0, scale_by_keep=True): | |
| super(DropPath, self).__init__() | |
| self.drop_prob = drop_prob | |
| self.scale_by_keep = scale_by_keep | |
| def forward(self, x): | |
| if self.drop_prob == 0.0 or not self.training: | |
| return x | |
| keep_prob = 1 - self.drop_prob | |
| shape = (x.shape[0],) + (1,) * (x.ndim - 1) | |
| random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
| if keep_prob > 0.0 and self.scale_by_keep: | |
| random_tensor.div_(keep_prob) | |
| return x * random_tensor | |
| # Lightly adapted from | |
| # https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa | |
| class MLP(nn.Module): | |
| def __init__( | |
| self, | |
| input_dim: int, | |
| hidden_dim: int, | |
| output_dim: int, | |
| num_layers: int, | |
| activation: nn.Module = nn.ReLU, | |
| sigmoid_output: bool = False, | |
| ) -> None: | |
| super().__init__() | |
| self.num_layers = num_layers | |
| h = [hidden_dim] * (num_layers - 1) | |
| self.layers = nn.ModuleList( | |
| nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) | |
| ) | |
| self.sigmoid_output = sigmoid_output | |
| self.act = activation() | |
| def forward(self, x): | |
| for i, layer in enumerate(self.layers): | |
| x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x) | |
| if self.sigmoid_output: | |
| x = F.sigmoid(x) | |
| return x | |
| # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa | |
| # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa | |
| class LayerNorm2d(nn.Module): | |
| def __init__(self, num_channels: int, eps: float = 1e-6) -> None: | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(num_channels)) | |
| self.bias = nn.Parameter(torch.zeros(num_channels)) | |
| self.eps = eps | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| u = x.mean(1, keepdim=True) | |
| s = (x - u).pow(2).mean(1, keepdim=True) | |
| x = (x - u) / torch.sqrt(s + self.eps) | |
| x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
| return x | |
| def sample_box_points( | |
| masks: torch.Tensor, | |
| noise: float = 0.1, # SAM default | |
| noise_bound: int = 20, # SAM default | |
| top_left_label: int = 2, | |
| bottom_right_label: int = 3, | |
| ) -> Tuple[np.array, np.array]: | |
| """ | |
| Sample a noised version of the top left and bottom right corners of a given `bbox` | |
| Inputs: | |
| - masks: [B, 1, H,W] boxes, dtype=torch.Tensor | |
| - noise: noise as a fraction of box width and height, dtype=float | |
| - noise_bound: maximum amount of noise (in pure pixesl), dtype=int | |
| Returns: | |
| - box_coords: [B, num_pt, 2], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.float | |
| - box_labels: [B, num_pt], label 2 is reserverd for top left and 3 for bottom right corners, dtype=torch.int32 | |
| """ | |
| device = masks.device | |
| box_coords = mask_to_box(masks) | |
| B, _, H, W = masks.shape | |
| box_labels = torch.tensor( | |
| [top_left_label, bottom_right_label], dtype=torch.int, device=device | |
| ).repeat(B) | |
| if noise > 0.0: | |
| if not isinstance(noise_bound, torch.Tensor): | |
| noise_bound = torch.tensor(noise_bound, device=device) | |
| bbox_w = box_coords[..., 2] - box_coords[..., 0] | |
| bbox_h = box_coords[..., 3] - box_coords[..., 1] | |
| max_dx = torch.min(bbox_w * noise, noise_bound) | |
| max_dy = torch.min(bbox_h * noise, noise_bound) | |
| box_noise = 2 * torch.rand(B, 1, 4, device=device) - 1 | |
| box_noise = box_noise * torch.stack((max_dx, max_dy, max_dx, max_dy), dim=-1) | |
| box_coords = box_coords + box_noise | |
| img_bounds = ( | |
| torch.tensor([W, H, W, H], device=device) - 1 | |
| ) # uncentered pixel coords | |
| box_coords.clamp_(torch.zeros_like(img_bounds), img_bounds) # In place clamping | |
| box_coords = box_coords.reshape(-1, 2, 2) # always 2 points | |
| box_labels = box_labels.reshape(-1, 2) | |
| return box_coords, box_labels | |
| def sample_random_points_from_errors(gt_masks, pred_masks, num_pt=1): | |
| """ | |
| Sample `num_pt` random points (along with their labels) independently from the error regions. | |
| Inputs: | |
| - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool | |
| - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None | |
| - num_pt: int, number of points to sample independently for each of the B error maps | |
| Outputs: | |
| - points: [B, num_pt, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point | |
| - labels: [B, num_pt], dtype=torch.int32, where 1 means positive clicks and 0 means | |
| negative clicks | |
| """ | |
| if pred_masks is None: # if pred_masks is not provided, treat it as empty | |
| pred_masks = torch.zeros_like(gt_masks) | |
| assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1 | |
| assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape | |
| assert num_pt >= 0 | |
| B, _, H_im, W_im = gt_masks.shape | |
| device = gt_masks.device | |
| # false positive region, a new point sampled in this region should have | |
| # negative label to correct the FP error | |
| fp_masks = ~gt_masks & pred_masks | |
| # false negative region, a new point sampled in this region should have | |
| # positive label to correct the FN error | |
| fn_masks = gt_masks & ~pred_masks | |
| # whether the prediction completely match the ground-truth on each mask | |
| all_correct = torch.all((gt_masks == pred_masks).flatten(2), dim=2) | |
| all_correct = all_correct[..., None, None] | |
| # channel 0 is FP map, while channel 1 is FN map | |
| pts_noise = torch.rand(B, num_pt, H_im, W_im, 2, device=device) | |
| # sample a negative new click from FP region or a positive new click | |
| # from FN region, depend on where the maximum falls, | |
| # and in case the predictions are all correct (no FP or FN), we just | |
| # sample a negative click from the background region | |
| pts_noise[..., 0] *= fp_masks | (all_correct & ~gt_masks) | |
| pts_noise[..., 1] *= fn_masks | |
| pts_idx = pts_noise.flatten(2).argmax(dim=2) | |
| labels = (pts_idx % 2).to(torch.int32) | |
| pts_idx = pts_idx // 2 | |
| pts_x = pts_idx % W_im | |
| pts_y = pts_idx // W_im | |
| points = torch.stack([pts_x, pts_y], dim=2).to(torch.float) | |
| return points, labels | |
| def sample_one_point_from_error_center(gt_masks, pred_masks, padding=True): | |
| """ | |
| Sample 1 random point (along with its label) from the center of each error region, | |
| that is, the point with the largest distance to the boundary of each error region. | |
| This is the RITM sampling method from https://github.com/saic-vul/ritm_interactive_segmentation/blob/master/isegm/inference/clicker.py | |
| Inputs: | |
| - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool | |
| - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None | |
| - padding: if True, pad with boundary of 1 px for distance transform | |
| Outputs: | |
| - points: [B, 1, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point | |
| - labels: [B, 1], dtype=torch.int32, where 1 means positive clicks and 0 means negative clicks | |
| """ | |
| import cv2 | |
| if pred_masks is None: | |
| pred_masks = torch.zeros_like(gt_masks) | |
| assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1 | |
| assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape | |
| B, _, _, W_im = gt_masks.shape | |
| device = gt_masks.device | |
| # false positive region, a new point sampled in this region should have | |
| # negative label to correct the FP error | |
| fp_masks = ~gt_masks & pred_masks | |
| # false negative region, a new point sampled in this region should have | |
| # positive label to correct the FN error | |
| fn_masks = gt_masks & ~pred_masks | |
| fp_masks = fp_masks.cpu().numpy() | |
| fn_masks = fn_masks.cpu().numpy() | |
| points = torch.zeros(B, 1, 2, dtype=torch.float) | |
| labels = torch.ones(B, 1, dtype=torch.int32) | |
| for b in range(B): | |
| fn_mask = fn_masks[b, 0] | |
| fp_mask = fp_masks[b, 0] | |
| if padding: | |
| fn_mask = np.pad(fn_mask, ((1, 1), (1, 1)), "constant") | |
| fp_mask = np.pad(fp_mask, ((1, 1), (1, 1)), "constant") | |
| # compute the distance of each point in FN/FP region to its boundary | |
| fn_mask_dt = cv2.distanceTransform(fn_mask.astype(np.uint8), cv2.DIST_L2, 0) | |
| fp_mask_dt = cv2.distanceTransform(fp_mask.astype(np.uint8), cv2.DIST_L2, 0) | |
| if padding: | |
| fn_mask_dt = fn_mask_dt[1:-1, 1:-1] | |
| fp_mask_dt = fp_mask_dt[1:-1, 1:-1] | |
| # take the point in FN/FP region with the largest distance to its boundary | |
| fn_mask_dt_flat = fn_mask_dt.reshape(-1) | |
| fp_mask_dt_flat = fp_mask_dt.reshape(-1) | |
| fn_argmax = np.argmax(fn_mask_dt_flat) | |
| fp_argmax = np.argmax(fp_mask_dt_flat) | |
| is_positive = fn_mask_dt_flat[fn_argmax] > fp_mask_dt_flat[fp_argmax] | |
| pt_idx = fn_argmax if is_positive else fp_argmax | |
| points[b, 0, 0] = pt_idx % W_im # x | |
| points[b, 0, 1] = pt_idx // W_im # y | |
| labels[b, 0] = int(is_positive) | |
| points = points.to(device) | |
| labels = labels.to(device) | |
| return points, labels | |
| def get_next_point(gt_masks, pred_masks, method): | |
| if method == "uniform": | |
| return sample_random_points_from_errors(gt_masks, pred_masks) | |
| elif method == "center": | |
| return sample_one_point_from_error_center(gt_masks, pred_masks) | |
| else: | |
| raise ValueError(f"unknown sampling method {method}") | |