SkyReels-V2 / app_df.py
fffiloni's picture
Update app_df.py
a13086a verified
raw
history blame
5.91 kB
import os
import gc
import time
import random
import torch
import imageio
import gradio as gr
from diffusers.utils import load_image
from skyreels_v2_infer import DiffusionForcingPipeline
from skyreels_v2_infer.modules import download_model
from skyreels_v2_infer.pipelines import PromptEnhancer, resizecrop
def generate_diffusion_forced_video(
prompt,
model_id,
resolution,
num_frames,
image=None,
ar_step=0,
causal_attention=False,
causal_block_size=1,
base_num_frames=97,
overlap_history=None,
addnoise_condition=0,
guidance_scale=6.0,
shift=8.0,
inference_steps=30,
use_usp=False,
offload=False,
fps=24,
seed=None,
prompt_enhancer=False,
teacache=False,
teacache_thresh=0.2,
use_ret_steps=False
):
model_id = download_model(model_id)
if resolution == "540P":
height, width = 544, 960
elif resolution == "720P":
height, width = 720, 1280
else:
raise ValueError(f"Invalid resolution: {resolution}")
if seed is None:
random.seed(time.time())
seed = int(random.randrange(4294967294))
if num_frames > base_num_frames and overlap_history is None:
raise ValueError("Specify `overlap_history` for long video generation. Try 17 or 37.")
if addnoise_condition > 60:
print("Warning: Large `addnoise_condition` may reduce consistency. Recommended: 20.")
if image is not None:
image = load_image(image).convert("RGB")
image_width, image_height = image.size
if image_height > image_width:
height, width = width, height
image = resizecrop(image, height, width)
negative_prompt = "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走"
prompt_input = prompt
if prompt_enhancer and image is None:
enhancer = PromptEnhancer()
prompt_input = enhancer(prompt_input)
del enhancer
gc.collect()
torch.cuda.empty_cache()
pipe = DiffusionForcingPipeline(
model_id,
dit_path=model_id,
device=torch.device("cuda"),
weight_dtype=torch.bfloat16,
use_usp=use_usp,
offload=offload,
)
if causal_attention:
pipe.transformer.set_ar_attention(causal_block_size)
if teacache:
if ar_step > 0:
num_steps = (
inference_steps + (((base_num_frames - 1) // 4 + 1) // causal_block_size - 1) * ar_step
)
else:
num_steps = inference_steps
pipe.transformer.initialize_teacache(
enable_teacache=True,
num_steps=num_steps,
teacache_thresh=teacache_thresh,
use_ret_steps=use_ret_steps,
ckpt_dir=model_id,
)
with torch.amp.autocast("cuda", dtype=pipe.transformer.dtype), torch.no_grad():
video_frames = pipe(
prompt=prompt_input,
negative_prompt=negative_prompt,
image=image,
height=height,
width=width,
num_frames=num_frames,
num_inference_steps=inference_steps,
shift=shift,
guidance_scale=guidance_scale,
generator=torch.Generator(device="cuda").manual_seed(seed),
overlap_history=overlap_history,
addnoise_condition=addnoise_condition,
base_num_frames=base_num_frames,
ar_step=ar_step,
causal_block_size=causal_block_size,
fps=fps,
)[0]
os.makedirs("gradio_df_videos", exist_ok=True)
timestamp = time.strftime("%Y%m%d_%H%M%S")
output_path = f"gradio_df_videos/{prompt[:50].replace('/', '')}_{seed}_{timestamp}.mp4"
imageio.mimwrite(output_path, video_frames, fps=fps, quality=8, output_params=["-loglevel", "error"])
return output_path
# Gradio UI
resolution_options = ["540P", "720P"]
model_options = ["Skywork/SkyReels-V2-DF-1.3B-540P"] # Update if there are more
gr.Interface(
fn=generate_diffusion_forced_video,
inputs=[
gr.Textbox(label="Prompt"),
gr.Dropdown(choices=model_options, value=model_options[0], label="Model ID"),
gr.Radio(choices=resolution_options, value="540P", label="Resolution"),
gr.Slider(minimum=16, maximum=200, value=97, step=1, label="Number of Frames"),
gr.Image(type="filepath", label="Input Image (optional)"),
gr.Number(label="AR Step", value=0),
gr.Checkbox(label="Causal Attention"),
gr.Number(label="Causal Block Size", value=1),
gr.Number(label="Base Num Frames", value=97),
gr.Number(label="Overlap History (set for long videos)", value=None),
gr.Number(label="AddNoise Condition", value=0),
gr.Slider(minimum=1.0, maximum=20.0, value=6.0, step=0.1, label="Guidance Scale"),
gr.Slider(minimum=0.0, maximum=20.0, value=8.0, step=0.1, label="Shift"),
gr.Slider(minimum=1, maximum=100, value=30, step=1, label="Inference Steps"),
gr.Checkbox(label="Use USP"),
gr.Checkbox(label="Offload", value=True, interactive=False),
gr.Slider(minimum=1, maximum=60, value=24, step=1, label="FPS"),
gr.Number(label="Seed (optional)", precision=0),
gr.Checkbox(label="Prompt Enhancer"),
gr.Checkbox(label="Use TeaCache"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.01, label="TeaCache Threshold"),
gr.Checkbox(label="Use Retention Steps"),
],
outputs=gr.Video(label="Generated Video"),
title="SkyReels V2 Diffusion Forcing"
).launch()