Spaces:
Running
Running
Create app_df.py
Browse files
app_df.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gc
|
3 |
+
import time
|
4 |
+
import random
|
5 |
+
import torch
|
6 |
+
import imageio
|
7 |
+
import gradio as gr
|
8 |
+
from diffusers.utils import load_image
|
9 |
+
|
10 |
+
from skyreels_v2_infer import DiffusionForcingPipeline
|
11 |
+
from skyreels_v2_infer.modules import download_model
|
12 |
+
from skyreels_v2_infer.pipelines import PromptEnhancer, resizecrop
|
13 |
+
|
14 |
+
def generate_diffusion_forced_video(
|
15 |
+
prompt,
|
16 |
+
model_id,
|
17 |
+
resolution,
|
18 |
+
num_frames,
|
19 |
+
image=None,
|
20 |
+
ar_step=0,
|
21 |
+
causal_attention=False,
|
22 |
+
causal_block_size=1,
|
23 |
+
base_num_frames=97,
|
24 |
+
overlap_history=None,
|
25 |
+
addnoise_condition=0,
|
26 |
+
guidance_scale=6.0,
|
27 |
+
shift=8.0,
|
28 |
+
inference_steps=30,
|
29 |
+
use_usp=False,
|
30 |
+
offload=False,
|
31 |
+
fps=24,
|
32 |
+
seed=None,
|
33 |
+
prompt_enhancer=False,
|
34 |
+
teacache=False,
|
35 |
+
teacache_thresh=0.2,
|
36 |
+
use_ret_steps=False
|
37 |
+
):
|
38 |
+
model_id = download_model(model_id)
|
39 |
+
|
40 |
+
if resolution == "540P":
|
41 |
+
height, width = 544, 960
|
42 |
+
elif resolution == "720P":
|
43 |
+
height, width = 720, 1280
|
44 |
+
else:
|
45 |
+
raise ValueError(f"Invalid resolution: {resolution}")
|
46 |
+
|
47 |
+
if seed is None:
|
48 |
+
random.seed(time.time())
|
49 |
+
seed = int(random.randrange(4294967294))
|
50 |
+
|
51 |
+
if num_frames > base_num_frames and overlap_history is None:
|
52 |
+
raise ValueError("Specify `overlap_history` for long video generation. Try 17 or 37.")
|
53 |
+
if addnoise_condition > 60:
|
54 |
+
print("Warning: Large `addnoise_condition` may reduce consistency. Recommended: 20.")
|
55 |
+
|
56 |
+
if image is not None:
|
57 |
+
image = load_image(image).convert("RGB")
|
58 |
+
image_width, image_height = image.size
|
59 |
+
if image_height > image_width:
|
60 |
+
height, width = width, height
|
61 |
+
image = resizecrop(image, height, width)
|
62 |
+
|
63 |
+
negative_prompt = "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走"
|
64 |
+
|
65 |
+
prompt_input = prompt
|
66 |
+
if prompt_enhancer and image is None:
|
67 |
+
enhancer = PromptEnhancer()
|
68 |
+
prompt_input = enhancer(prompt_input)
|
69 |
+
del enhancer
|
70 |
+
gc.collect()
|
71 |
+
torch.cuda.empty_cache()
|
72 |
+
|
73 |
+
pipe = DiffusionForcingPipeline(
|
74 |
+
model_id,
|
75 |
+
dit_path=model_id,
|
76 |
+
device=torch.device("cuda"),
|
77 |
+
weight_dtype=torch.bfloat16,
|
78 |
+
use_usp=use_usp,
|
79 |
+
offload=offload,
|
80 |
+
)
|
81 |
+
|
82 |
+
if causal_attention:
|
83 |
+
pipe.transformer.set_ar_attention(causal_block_size)
|
84 |
+
|
85 |
+
if teacache:
|
86 |
+
if ar_step > 0:
|
87 |
+
num_steps = (
|
88 |
+
inference_steps + (((base_num_frames - 1) // 4 + 1) // causal_block_size - 1) * ar_step
|
89 |
+
)
|
90 |
+
else:
|
91 |
+
num_steps = inference_steps
|
92 |
+
pipe.transformer.initialize_teacache(
|
93 |
+
enable_teacache=True,
|
94 |
+
num_steps=num_steps,
|
95 |
+
teacache_thresh=teacache_thresh,
|
96 |
+
use_ret_steps=use_ret_steps,
|
97 |
+
ckpt_dir=model_id,
|
98 |
+
)
|
99 |
+
|
100 |
+
with torch.amp.autocast("cuda", dtype=pipe.transformer.dtype), torch.no_grad():
|
101 |
+
video_frames = pipe(
|
102 |
+
prompt=prompt_input,
|
103 |
+
negative_prompt=negative_prompt,
|
104 |
+
image=image,
|
105 |
+
height=height,
|
106 |
+
width=width,
|
107 |
+
num_frames=num_frames,
|
108 |
+
num_inference_steps=inference_steps,
|
109 |
+
shift=shift,
|
110 |
+
guidance_scale=guidance_scale,
|
111 |
+
generator=torch.Generator(device="cuda").manual_seed(seed),
|
112 |
+
overlap_history=overlap_history,
|
113 |
+
addnoise_condition=addnoise_condition,
|
114 |
+
base_num_frames=base_num_frames,
|
115 |
+
ar_step=ar_step,
|
116 |
+
causal_block_size=causal_block_size,
|
117 |
+
fps=fps,
|
118 |
+
)[0]
|
119 |
+
|
120 |
+
os.makedirs("gradio_df_videos", exist_ok=True)
|
121 |
+
timestamp = time.strftime("%Y%m%d_%H%M%S")
|
122 |
+
output_path = f"gradio_df_videos/{prompt[:50].replace('/', '')}_{seed}_{timestamp}.mp4"
|
123 |
+
imageio.mimwrite(output_path, video_frames, fps=fps, quality=8, output_params=["-loglevel", "error"])
|
124 |
+
return output_path
|
125 |
+
|
126 |
+
|
127 |
+
# Gradio UI
|
128 |
+
resolution_options = ["540P", "720P"]
|
129 |
+
model_options = ["Skywork/SkyReels-V2-DF-1.3B-540P"] # Update if there are more
|
130 |
+
|
131 |
+
gr.Interface(
|
132 |
+
fn=generate_diffusion_forced_video,
|
133 |
+
inputs=[
|
134 |
+
gr.Textbox(label="Prompt"),
|
135 |
+
gr.Dropdown(choices=model_options, value=model_options[0], label="Model ID"),
|
136 |
+
gr.Radio(choices=resolution_options, value="540P", label="Resolution"),
|
137 |
+
gr.Slider(minimum=16, maximum=200, value=97, step=1, label="Number of Frames"),
|
138 |
+
gr.Image(type="filepath", label="Input Image (optional)"),
|
139 |
+
gr.Number(label="AR Step", value=0),
|
140 |
+
gr.Checkbox(label="Causal Attention"),
|
141 |
+
gr.Number(label="Causal Block Size", value=1),
|
142 |
+
gr.Number(label="Base Num Frames", value=97),
|
143 |
+
gr.Number(label="Overlap History (set for long videos)", value=None),
|
144 |
+
gr.Number(label="AddNoise Condition", value=0),
|
145 |
+
gr.Slider(minimum=1.0, maximum=20.0, value=6.0, step=0.1, label="Guidance Scale"),
|
146 |
+
gr.Slider(minimum=0.0, maximum=20.0, value=8.0, step=0.1, label="Shift"),
|
147 |
+
gr.Slider(minimum=1, maximum=100, value=30, step=1, label="Inference Steps"),
|
148 |
+
gr.Checkbox(label="Use USP"),
|
149 |
+
gr.Checkbox(label="Offload"),
|
150 |
+
gr.Slider(minimum=1, maximum=60, value=24, step=1, label="FPS"),
|
151 |
+
gr.Number(label="Seed (optional)", precision=0),
|
152 |
+
gr.Checkbox(label="Prompt Enhancer"),
|
153 |
+
gr.Checkbox(label="Use TeaCache"),
|
154 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.01, label="TeaCache Threshold"),
|
155 |
+
gr.Checkbox(label="Use Retention Steps"),
|
156 |
+
],
|
157 |
+
outputs=gr.Video(label="Generated Video"),
|
158 |
+
title="SkyReels V2 Diffusion Forcing Generator"
|
159 |
+
).launch()
|