Spaces:
Running
Running
File size: 10,444 Bytes
406f22d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import os
import json
import librosa
import numpy as np
from typing import Any, Tuple
import scipy
import soundfile as sf
import torch
import random
from collections import defaultdict
from pytorch_lightning import LightningDataModule
# from pytorch_lightning.core.mixins import HyperparametersMixin
import torchaudio
from torch.utils.data import ConcatDataset, DataLoader, Dataset
from typing import Any, Dict, Optional, Tuple
from pytorch_lightning.utilities import rank_zero_only
@rank_zero_only
def print_(message: str):
print(message)
def normalize_tensor_wav(wav_tensor, eps=1e-8, std=None):
mean = wav_tensor.mean(-1, keepdim=True)
if std is None:
std = wav_tensor.std(-1, keepdim=True)
return (wav_tensor - mean) / (std + eps)
def find_bottom_directories(root_dir):
bottom_directories = []
for dirpath, dirnames, filenames in os.walk(root_dir):
# 如果一个目录下没有子目录,则认为它是最底层的
if not dirnames:
bottom_directories.append(dirpath)
return bottom_directories
def compute_mch_rms_dB(mch_wav, fs=16000, energy_thresh=-50):
"""Return the wav RMS calculated only in the active portions"""
mean_square = max(1e-20, torch.mean(mch_wav ** 2))
return 10 * np.log10(mean_square)
class Libri2MixDataset(Dataset):
def __init__(
self,
json_dir: str = "",
n_src: int = 2,
sample_rate: int = 8000,
segment: float = 4.0,
normalize_audio: bool = False,
) -> None:
super().__init__()
self.EPS = 1e-8
if json_dir == None:
raise ValueError("JSON DIR is None!")
if n_src not in [1, 2]:
raise ValueError("{} is not in [1, 2]".format(n_src))
self.json_dir = json_dir
self.sample_rate = sample_rate
self.normalize_audio = normalize_audio
if segment is None:
self.seg_len = None
self.fps_len = None
else:
self.seg_len = int(segment * sample_rate)
self.n_src = n_src
self.test = self.seg_len is None
mix_json = os.path.join(json_dir, "mix_both.json")
sources_json = [
os.path.join(json_dir, source + ".json") for source in ["s1", "s2"]
]
with open(mix_json, "r") as f:
mix_infos = json.load(f)
sources_infos = []
for src_json in sources_json:
with open(src_json, "r") as f:
sources_infos.append(json.load(f))
self.mix = []
self.sources = []
if self.n_src == 1:
orig_len = len(mix_infos) * 2
drop_utt, drop_len = 0, 0
if not self.test:
for i in range(len(mix_infos) - 1, -1, -1):
if mix_infos[i][1] < self.seg_len:
drop_utt = drop_utt + 1
drop_len = drop_len + mix_infos[i][1]
del mix_infos[i]
for src_inf in sources_infos:
del src_inf[i]
else:
for src_inf in sources_infos:
self.mix.append(mix_infos[i])
self.sources.append(src_inf[i])
else:
for i in range(len(mix_infos)):
for src_inf in sources_infos:
self.mix.append(mix_infos[i])
self.sources.append(src_inf[i])
print_(
"Drop {} utts({:.2f} h) from {} (shorter than {} samples)".format(
drop_utt, drop_len / sample_rate / 3600, orig_len, self.seg_len
)
)
self.length = len(self.mix)
elif self.n_src == 2:
orig_len = len(mix_infos)
drop_utt, drop_len = 0, 0
if not self.test:
for i in range(len(mix_infos) - 1, -1, -1): # Go backward
if mix_infos[i][1] < self.seg_len:
drop_utt = drop_utt + 1
drop_len = drop_len + mix_infos[i][1]
del mix_infos[i]
for src_inf in sources_infos:
del src_inf[i]
print_(
"Drop {} utts({:.2f} h) from {} (shorter than {} samples)".format(
drop_utt, drop_len / sample_rate / 36000, orig_len, self.seg_len
)
)
self.mix = mix_infos
self.sources = sources_infos
self.length = len(self.mix)
def __len__(self):
return self.length
def preprocess_audio_only(self, idx: int):
if self.n_src == 1:
if self.mix[idx][1] == self.seg_len or self.test:
rand_start = 0
else:
rand_start = np.random.randint(0, self.mix[idx][1] - self.seg_len)
if self.test:
stop = None
else:
stop = rand_start + self.seg_len
# Load mixture
x, _ = sf.read(
self.mix[idx][0], start=rand_start, stop=stop, dtype="float32"
)
# Load sources
s, _ = sf.read(
self.sources[idx][0], start=rand_start, stop=stop, dtype="float32"
)
# torch from numpy
target = torch.from_numpy(s)
mixture = torch.from_numpy(x)
if self.normalize_audio:
m_std = mixture.std(-1, keepdim=True)
mixture = normalize_tensor_wav(mixture, eps=self.EPS, std=m_std)
target = normalize_tensor_wav(target, eps=self.EPS, std=m_std)
return mixture, target.unsqueeze(0), self.mix[idx][0].split("/")[-1]
# import pdb; pdb.set_trace()
if self.n_src == 2:
if self.mix[idx][1] == self.seg_len or self.test:
rand_start = 0
else:
rand_start = np.random.randint(0, self.mix[idx][1] - self.seg_len)
if self.test:
stop = None
else:
stop = rand_start + self.seg_len
# Load mixture
x, _ = sf.read(
self.mix[idx][0], start=rand_start, stop=stop, dtype="float32"
)
# Load sources
source_arrays = []
for src in self.sources:
s, _ = sf.read(
src[idx][0], start=rand_start, stop=stop, dtype="float32"
)
source_arrays.append(s)
sources = torch.from_numpy(np.vstack(source_arrays))
mixture = torch.sum(sources, dim=0)
if self.normalize_audio:
m_std = mixture.std(-1, keepdim=True)
mixture = normalize_tensor_wav(mixture, eps=self.EPS, std=m_std)
sources = normalize_tensor_wav(sources, eps=self.EPS, std=m_std)
return mixture, sources, self.mix[idx][0].split("/")[-1]
def __getitem__(self, index: int):
return self.preprocess_audio_only(index)
class Libri2MixModuleRemix(LightningDataModule):
def __init__(
self,
train_dir: str,
valid_dir: str,
test_dir: str,
n_src: int = 2,
sample_rate: int = 8000,
segment: float = 4.0,
normalize_audio: bool = False,
batch_size: int = 64,
num_workers: int = 0,
pin_memory: bool = False,
persistent_workers: bool = False,
) -> None:
super().__init__()
self.save_hyperparameters(logger=False)
self.data_train: Optional[Dataset] = None
self.data_val: Optional[Dataset] = None
self.data_test: Optional[Dataset] = None
def setup(self, stage: Optional[str] = None) -> None:
"""Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.
This method is called by Lightning before `trainer.fit()`, `trainer.validate()`, `trainer.test()`, and
`trainer.predict()`, so be careful not to execute things like random split twice! Also, it is called after
`self.prepare_data()` and there is a barrier in between which ensures that all the processes proceed to
`self.setup()` once the data is prepared and available for use.
:param stage: The stage to setup. Either `"fit"`, `"validate"`, `"test"`, or `"predict"`. Defaults to ``None``.
"""
# load and split datasets only if not loaded already
if not self.data_train and not self.data_val and not self.data_test:
self.data_train = Libri2MixDataset(
json_dir=self.hparams.train_dir,
n_src=self.hparams.n_src,
sample_rate=self.hparams.sample_rate,
segment=self.hparams.segment,
normalize_audio=self.hparams.normalize_audio,
)
self.data_val = Libri2MixDataset(
json_dir=self.hparams.valid_dir,
n_src=self.hparams.n_src,
sample_rate=self.hparams.sample_rate,
segment=None,
normalize_audio=self.hparams.normalize_audio,
)
self.data_test = Libri2MixDataset(
json_dir=self.hparams.test_dir,
n_src=self.hparams.n_src,
sample_rate=self.hparams.sample_rate,
segment=None,
normalize_audio=self.hparams.normalize_audio,
)
def train_dataloader(self) -> DataLoader:
return DataLoader(
self.data_train,
batch_size=self.hparams.batch_size,
num_workers=self.hparams.num_workers,
shuffle=True,
pin_memory=True,
)
def val_dataloader(self) -> DataLoader:
return DataLoader(
self.data_val,
batch_size=1,
num_workers=self.hparams.num_workers,
shuffle=False,
pin_memory=True,
)
def test_dataloader(self) -> DataLoader:
return DataLoader(
self.data_test,
batch_size=1,
num_workers=self.hparams.num_workers,
shuffle=False,
pin_memory=True,
)
@property
def make_loader(self):
return self.train_dataloader(), self.val_dataloader(), self.test_dataloader()
|