import os import json import librosa import numpy as np from typing import Any, Tuple import scipy import soundfile as sf import torch import random from collections import defaultdict from pytorch_lightning import LightningDataModule # from pytorch_lightning.core.mixins import HyperparametersMixin import torchaudio from torch.utils.data import ConcatDataset, DataLoader, Dataset from typing import Any, Dict, Optional, Tuple from pytorch_lightning.utilities import rank_zero_only @rank_zero_only def print_(message: str): print(message) def normalize_tensor_wav(wav_tensor, eps=1e-8, std=None): mean = wav_tensor.mean(-1, keepdim=True) if std is None: std = wav_tensor.std(-1, keepdim=True) return (wav_tensor - mean) / (std + eps) def find_bottom_directories(root_dir): bottom_directories = [] for dirpath, dirnames, filenames in os.walk(root_dir): # 如果一个目录下没有子目录,则认为它是最底层的 if not dirnames: bottom_directories.append(dirpath) return bottom_directories def compute_mch_rms_dB(mch_wav, fs=16000, energy_thresh=-50): """Return the wav RMS calculated only in the active portions""" mean_square = max(1e-20, torch.mean(mch_wav ** 2)) return 10 * np.log10(mean_square) class Libri2MixDataset(Dataset): def __init__( self, json_dir: str = "", n_src: int = 2, sample_rate: int = 8000, segment: float = 4.0, normalize_audio: bool = False, ) -> None: super().__init__() self.EPS = 1e-8 if json_dir == None: raise ValueError("JSON DIR is None!") if n_src not in [1, 2]: raise ValueError("{} is not in [1, 2]".format(n_src)) self.json_dir = json_dir self.sample_rate = sample_rate self.normalize_audio = normalize_audio if segment is None: self.seg_len = None self.fps_len = None else: self.seg_len = int(segment * sample_rate) self.n_src = n_src self.test = self.seg_len is None mix_json = os.path.join(json_dir, "mix_both.json") sources_json = [ os.path.join(json_dir, source + ".json") for source in ["s1", "s2"] ] with open(mix_json, "r") as f: mix_infos = json.load(f) sources_infos = [] for src_json in sources_json: with open(src_json, "r") as f: sources_infos.append(json.load(f)) self.mix = [] self.sources = [] if self.n_src == 1: orig_len = len(mix_infos) * 2 drop_utt, drop_len = 0, 0 if not self.test: for i in range(len(mix_infos) - 1, -1, -1): if mix_infos[i][1] < self.seg_len: drop_utt = drop_utt + 1 drop_len = drop_len + mix_infos[i][1] del mix_infos[i] for src_inf in sources_infos: del src_inf[i] else: for src_inf in sources_infos: self.mix.append(mix_infos[i]) self.sources.append(src_inf[i]) else: for i in range(len(mix_infos)): for src_inf in sources_infos: self.mix.append(mix_infos[i]) self.sources.append(src_inf[i]) print_( "Drop {} utts({:.2f} h) from {} (shorter than {} samples)".format( drop_utt, drop_len / sample_rate / 3600, orig_len, self.seg_len ) ) self.length = len(self.mix) elif self.n_src == 2: orig_len = len(mix_infos) drop_utt, drop_len = 0, 0 if not self.test: for i in range(len(mix_infos) - 1, -1, -1): # Go backward if mix_infos[i][1] < self.seg_len: drop_utt = drop_utt + 1 drop_len = drop_len + mix_infos[i][1] del mix_infos[i] for src_inf in sources_infos: del src_inf[i] print_( "Drop {} utts({:.2f} h) from {} (shorter than {} samples)".format( drop_utt, drop_len / sample_rate / 36000, orig_len, self.seg_len ) ) self.mix = mix_infos self.sources = sources_infos self.length = len(self.mix) def __len__(self): return self.length def preprocess_audio_only(self, idx: int): if self.n_src == 1: if self.mix[idx][1] == self.seg_len or self.test: rand_start = 0 else: rand_start = np.random.randint(0, self.mix[idx][1] - self.seg_len) if self.test: stop = None else: stop = rand_start + self.seg_len # Load mixture x, _ = sf.read( self.mix[idx][0], start=rand_start, stop=stop, dtype="float32" ) # Load sources s, _ = sf.read( self.sources[idx][0], start=rand_start, stop=stop, dtype="float32" ) # torch from numpy target = torch.from_numpy(s) mixture = torch.from_numpy(x) if self.normalize_audio: m_std = mixture.std(-1, keepdim=True) mixture = normalize_tensor_wav(mixture, eps=self.EPS, std=m_std) target = normalize_tensor_wav(target, eps=self.EPS, std=m_std) return mixture, target.unsqueeze(0), self.mix[idx][0].split("/")[-1] # import pdb; pdb.set_trace() if self.n_src == 2: if self.mix[idx][1] == self.seg_len or self.test: rand_start = 0 else: rand_start = np.random.randint(0, self.mix[idx][1] - self.seg_len) if self.test: stop = None else: stop = rand_start + self.seg_len # Load mixture x, _ = sf.read( self.mix[idx][0], start=rand_start, stop=stop, dtype="float32" ) # Load sources source_arrays = [] for src in self.sources: s, _ = sf.read( src[idx][0], start=rand_start, stop=stop, dtype="float32" ) source_arrays.append(s) sources = torch.from_numpy(np.vstack(source_arrays)) mixture = torch.sum(sources, dim=0) if self.normalize_audio: m_std = mixture.std(-1, keepdim=True) mixture = normalize_tensor_wav(mixture, eps=self.EPS, std=m_std) sources = normalize_tensor_wav(sources, eps=self.EPS, std=m_std) return mixture, sources, self.mix[idx][0].split("/")[-1] def __getitem__(self, index: int): return self.preprocess_audio_only(index) class Libri2MixModuleRemix(LightningDataModule): def __init__( self, train_dir: str, valid_dir: str, test_dir: str, n_src: int = 2, sample_rate: int = 8000, segment: float = 4.0, normalize_audio: bool = False, batch_size: int = 64, num_workers: int = 0, pin_memory: bool = False, persistent_workers: bool = False, ) -> None: super().__init__() self.save_hyperparameters(logger=False) self.data_train: Optional[Dataset] = None self.data_val: Optional[Dataset] = None self.data_test: Optional[Dataset] = None def setup(self, stage: Optional[str] = None) -> None: """Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`. This method is called by Lightning before `trainer.fit()`, `trainer.validate()`, `trainer.test()`, and `trainer.predict()`, so be careful not to execute things like random split twice! Also, it is called after `self.prepare_data()` and there is a barrier in between which ensures that all the processes proceed to `self.setup()` once the data is prepared and available for use. :param stage: The stage to setup. Either `"fit"`, `"validate"`, `"test"`, or `"predict"`. Defaults to ``None``. """ # load and split datasets only if not loaded already if not self.data_train and not self.data_val and not self.data_test: self.data_train = Libri2MixDataset( json_dir=self.hparams.train_dir, n_src=self.hparams.n_src, sample_rate=self.hparams.sample_rate, segment=self.hparams.segment, normalize_audio=self.hparams.normalize_audio, ) self.data_val = Libri2MixDataset( json_dir=self.hparams.valid_dir, n_src=self.hparams.n_src, sample_rate=self.hparams.sample_rate, segment=None, normalize_audio=self.hparams.normalize_audio, ) self.data_test = Libri2MixDataset( json_dir=self.hparams.test_dir, n_src=self.hparams.n_src, sample_rate=self.hparams.sample_rate, segment=None, normalize_audio=self.hparams.normalize_audio, ) def train_dataloader(self) -> DataLoader: return DataLoader( self.data_train, batch_size=self.hparams.batch_size, num_workers=self.hparams.num_workers, shuffle=True, pin_memory=True, ) def val_dataloader(self) -> DataLoader: return DataLoader( self.data_val, batch_size=1, num_workers=self.hparams.num_workers, shuffle=False, pin_memory=True, ) def test_dataloader(self) -> DataLoader: return DataLoader( self.data_test, batch_size=1, num_workers=self.hparams.num_workers, shuffle=False, pin_memory=True, ) @property def make_loader(self): return self.train_dataloader(), self.val_dataloader(), self.test_dataloader()