fix: update app.py to fit zero gpu
Browse files
app.py
CHANGED
|
@@ -11,96 +11,75 @@
|
|
| 11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
# See the License for the specific language governing permissions and
|
| 13 |
# limitations under the License.
|
| 14 |
-
|
| 15 |
-
import dataclasses
|
| 16 |
-
|
| 17 |
import gradio as gr
|
| 18 |
import torch
|
| 19 |
import spaces
|
| 20 |
|
| 21 |
from uno.flux.pipeline import UNOPipeline
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
model_type: str,
|
| 26 |
-
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
| 27 |
-
offload: bool = False,
|
| 28 |
-
):
|
| 29 |
-
pipeline = UNOPipeline(model_type, device, offload, only_lora=True, lora_rank=512)
|
| 30 |
-
pipeline.__call__ = spaces.GPU(duratioin=120)(pipeline.__call__)
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
with gr.Column():
|
| 36 |
-
prompt = gr.Textbox(label="Prompt", value="handsome woman in the city")
|
| 37 |
-
with gr.Row():
|
| 38 |
-
image_prompt1 = gr.Image(label="ref img1", visible=True, interactive=True, type="pil")
|
| 39 |
-
image_prompt2 = gr.Image(label="ref img2", visible=True, interactive=True, type="pil")
|
| 40 |
-
image_prompt3 = gr.Image(label="ref img3", visible=True, interactive=True, type="pil")
|
| 41 |
-
image_prompt4 = gr.Image(label="ref img4", visible=True, interactive=True, type="pil")
|
| 42 |
|
| 43 |
-
with gr.Row():
|
| 44 |
-
with gr.Column():
|
| 45 |
-
ref_long_side = gr.Slider(128, 512, 512, step=16, label="Long side of Ref Images")
|
| 46 |
-
with gr.Column():
|
| 47 |
-
gr.Markdown("📌 **The recommended ref scale** is related to the ref img number.\n")
|
| 48 |
-
gr.Markdown(" 1->512 / 2->320 / 3...n->256")
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
" and the higher size gives a better visual effect but is less stable"
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
with gr.Accordion("Generation Options", open=False):
|
| 62 |
-
with gr.Row():
|
| 63 |
-
num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
|
| 64 |
-
guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True)
|
| 65 |
-
seed = gr.Number(-1, label="Seed (-1 for random)")
|
| 66 |
-
|
| 67 |
-
generate_btn = gr.Button("Generate")
|
| 68 |
-
|
| 69 |
-
with gr.Column():
|
| 70 |
-
output_image = gr.Image(label="Generated Image")
|
| 71 |
-
download_btn = gr.File(label="Download full-resolution", type="filepath", interactive=False)
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
inputs = [
|
| 75 |
-
prompt, width, height, guidance, num_steps,
|
| 76 |
-
seed, ref_long_side, image_prompt1, image_prompt2, image_prompt3, image_prompt4
|
| 77 |
-
]
|
| 78 |
-
generate_btn.click(
|
| 79 |
-
fn=pipeline.gradio_generate,
|
| 80 |
-
inputs=inputs,
|
| 81 |
-
outputs=[output_image, download_btn],
|
| 82 |
-
)
|
| 83 |
-
|
| 84 |
-
return demo
|
| 85 |
-
|
| 86 |
-
if __name__ == "__main__":
|
| 87 |
-
from typing import Literal
|
| 88 |
-
|
| 89 |
-
from transformers import HfArgumentParser
|
| 90 |
-
|
| 91 |
-
@dataclasses.dataclass
|
| 92 |
-
class AppArgs:
|
| 93 |
-
name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev"
|
| 94 |
-
device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu"
|
| 95 |
-
offload: bool = dataclasses.field(
|
| 96 |
-
default=False,
|
| 97 |
-
metadata={"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."}
|
| 98 |
)
|
| 99 |
-
port: int = 7860
|
| 100 |
-
|
| 101 |
-
parser = HfArgumentParser([AppArgs])
|
| 102 |
-
args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs]
|
| 103 |
-
args = args_tuple[0]
|
| 104 |
|
| 105 |
-
|
| 106 |
-
demo.launch(server_port=args.port)
|
|
|
|
| 11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
# See the License for the specific language governing permissions and
|
| 13 |
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
| 14 |
import gradio as gr
|
| 15 |
import torch
|
| 16 |
import spaces
|
| 17 |
|
| 18 |
from uno.flux.pipeline import UNOPipeline
|
| 19 |
|
| 20 |
+
model_type = "flux-dev"
|
| 21 |
+
offload = False
|
| 22 |
+
device = "cuda"
|
| 23 |
+
|
| 24 |
+
pipeline = UNOPipeline(model_type, device, offload, only_lora=True, lora_rank=512)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
## it seems must use decorator can be trigger zero GPU
|
| 28 |
+
## not work by mannualy decorate by fn = spaces.GPU(duration=120)(fn)
|
| 29 |
+
@spaces.GPU(duration=120)
|
| 30 |
+
def generate_callback(*args, **kwargs):
|
| 31 |
+
return pipeline.gradio_generate(*args, **kwargs)
|
| 32 |
+
|
| 33 |
+
with gr.Blocks() as demo:
|
| 34 |
+
gr.Markdown(f"# UNO by UNO team")
|
| 35 |
+
with gr.Row():
|
| 36 |
+
with gr.Column():
|
| 37 |
+
prompt = gr.Textbox(label="Prompt", value="handsome woman in the city")
|
| 38 |
+
with gr.Row():
|
| 39 |
+
image_prompt1 = gr.Image(label="ref img1", visible=True, interactive=True, type="pil")
|
| 40 |
+
image_prompt2 = gr.Image(label="ref img2", visible=True, interactive=True, type="pil")
|
| 41 |
+
image_prompt3 = gr.Image(label="ref img3", visible=True, interactive=True, type="pil")
|
| 42 |
+
image_prompt4 = gr.Image(label="ref img4", visible=True, interactive=True, type="pil")
|
| 43 |
+
|
| 44 |
+
with gr.Row():
|
| 45 |
+
with gr.Column():
|
| 46 |
+
ref_long_side = gr.Slider(128, 512, 512, step=16, label="Long side of Ref Images")
|
| 47 |
+
with gr.Column():
|
| 48 |
+
gr.Markdown("📌 **The recommended ref scale** is related to the ref img number.\n")
|
| 49 |
+
gr.Markdown(" 1->512 / 2->320 / 3...n->256")
|
| 50 |
+
|
| 51 |
+
with gr.Row():
|
| 52 |
+
with gr.Column():
|
| 53 |
+
width = gr.Slider(512, 2048, 512, step=16, label="Gneration Width")
|
| 54 |
+
height = gr.Slider(512, 2048, 512, step=16, label="Gneration Height")
|
| 55 |
+
with gr.Column():
|
| 56 |
+
gr.Markdown("📌 The model trained on 512x512 resolution.\n")
|
| 57 |
+
gr.Markdown(
|
| 58 |
+
"The size closer to 512 is more stable,"
|
| 59 |
+
" and the higher size gives a better visual effect but is less stable"
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
with gr.Accordion("Generation Options", open=False):
|
| 63 |
+
with gr.Row():
|
| 64 |
+
num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
|
| 65 |
+
guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True)
|
| 66 |
+
seed = gr.Number(-1, label="Seed (-1 for random)")
|
| 67 |
|
| 68 |
+
generate_btn = gr.Button("Generate")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
with gr.Column():
|
| 71 |
+
output_image = gr.Image(label="Generated Image")
|
| 72 |
+
download_btn = gr.File(label="Download full-resolution", type="filepath", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
inputs = [
|
| 76 |
+
prompt, width, height, guidance, num_steps,
|
| 77 |
+
seed, ref_long_side, image_prompt1, image_prompt2, image_prompt3, image_prompt4
|
| 78 |
+
]
|
| 79 |
+
generate_btn.click(
|
| 80 |
+
fn=generate_callback,
|
| 81 |
+
inputs=inputs,
|
| 82 |
+
outputs=[output_image, download_btn],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
demo.launch()
|
|
|