Spaces:
Sleeping
Sleeping
File size: 16,175 Bytes
a5c8285 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
"""Modified from https://github.com/guoyww/AnimateDiff/blob/main/app.py
"""
import base64
import gc
import json
import os
import random
from datetime import datetime
from glob import glob
from omegaconf import OmegaConf
import cv2
import gradio as gr
import numpy as np
import pkg_resources
import requests
import torch
from diffusers import (CogVideoXDDIMScheduler, FlowMatchEulerDiscreteScheduler,
DDIMScheduler, DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
PNDMScheduler)
from PIL import Image
from safetensors import safe_open
from ..data.bucket_sampler import ASPECT_RATIO_512, get_closest_ratio
from ..utils.utils import save_videos_grid
gradio_version = pkg_resources.get_distribution("gradio").version
gradio_version_is_above_4 = True if int(gradio_version.split('.')[0]) >= 4 else False
css = """
.toolbutton {
margin-buttom: 0em 0em 0em 0em;
max-width: 2.5em;
min-width: 2.5em !important;
height: 2.5em;
}
"""
ddpm_scheduler_dict = {
"Euler": EulerDiscreteScheduler,
"Euler A": EulerAncestralDiscreteScheduler,
"DPM++": DPMSolverMultistepScheduler,
"PNDM": PNDMScheduler,
"DDIM": DDIMScheduler,
"DDIM_Origin": DDIMScheduler,
"DDIM_Cog": CogVideoXDDIMScheduler,
}
flow_scheduler_dict = {
"Flow": FlowMatchEulerDiscreteScheduler,
}
all_cheduler_dict = {**ddpm_scheduler_dict, **flow_scheduler_dict}
class Fun_Controller:
def __init__(self, GPU_memory_mode, scheduler_dict, weight_dtype, config_path=None):
# config dirs
self.basedir = os.getcwd()
self.config_dir = os.path.join(self.basedir, "config")
self.diffusion_transformer_dir = os.path.join(self.basedir, "models", "Diffusion_Transformer")
self.motion_module_dir = os.path.join(self.basedir, "models", "Motion_Module")
self.personalized_model_dir = os.path.join(self.basedir, "models", "Personalized_Model")
self.savedir = os.path.join(self.basedir, "samples", datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S"))
self.savedir_sample = os.path.join(self.savedir, "sample")
self.model_type = "Inpaint"
os.makedirs(self.savedir, exist_ok=True)
self.diffusion_transformer_list = []
self.motion_module_list = []
self.personalized_model_list = []
self.refresh_diffusion_transformer()
self.refresh_motion_module()
self.refresh_personalized_model()
# config models
self.tokenizer = None
self.text_encoder = None
self.vae = None
self.transformer = None
self.pipeline = None
self.motion_module_path = "none"
self.base_model_path = "none"
self.lora_model_path = "none"
self.GPU_memory_mode = GPU_memory_mode
self.weight_dtype = weight_dtype
self.scheduler_dict = scheduler_dict
if config_path is not None:
self.config = OmegaConf.load(config_path)
def refresh_diffusion_transformer(self):
self.diffusion_transformer_list = sorted(glob(os.path.join(self.diffusion_transformer_dir, "*/")))
def refresh_motion_module(self):
motion_module_list = sorted(glob(os.path.join(self.motion_module_dir, "*.safetensors")))
self.motion_module_list = [os.path.basename(p) for p in motion_module_list]
def refresh_personalized_model(self):
personalized_model_list = sorted(glob(os.path.join(self.personalized_model_dir, "*.safetensors")))
self.personalized_model_list = [os.path.basename(p) for p in personalized_model_list]
def update_model_type(self, model_type):
self.model_type = model_type
def update_diffusion_transformer(self, diffusion_transformer_dropdown):
pass
def update_base_model(self, base_model_dropdown):
self.base_model_path = base_model_dropdown
print("Update base model")
if base_model_dropdown == "none":
return gr.update()
if self.transformer is None:
gr.Info(f"Please select a pretrained model path.")
return gr.update(value=None)
else:
base_model_dropdown = os.path.join(self.personalized_model_dir, base_model_dropdown)
base_model_state_dict = {}
with safe_open(base_model_dropdown, framework="pt", device="cpu") as f:
for key in f.keys():
base_model_state_dict[key] = f.get_tensor(key)
self.transformer.load_state_dict(base_model_state_dict, strict=False)
print("Update base done")
return gr.update()
def update_lora_model(self, lora_model_dropdown):
print("Update lora model")
if lora_model_dropdown == "none":
self.lora_model_path = "none"
return gr.update()
lora_model_dropdown = os.path.join(self.personalized_model_dir, lora_model_dropdown)
self.lora_model_path = lora_model_dropdown
return gr.update()
def clear_cache(self,):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def input_check(self,
resize_method,
generation_method,
start_image,
end_image,
validation_video,
control_video,
is_api = False,
):
if self.transformer is None:
raise gr.Error(f"Please select a pretrained model path.")
if control_video is not None and self.model_type == "Inpaint":
if is_api:
return "", f"If specifying the control video, please set the model_type == \"Control\". "
else:
raise gr.Error(f"If specifying the control video, please set the model_type == \"Control\". ")
if control_video is None and self.model_type == "Control":
if is_api:
return "", f"If set the model_type == \"Control\", please specifying the control video. "
else:
raise gr.Error(f"If set the model_type == \"Control\", please specifying the control video. ")
if resize_method == "Resize according to Reference":
if start_image is None and validation_video is None and control_video is None:
if is_api:
return "", f"Please upload an image when using \"Resize according to Reference\"."
else:
raise gr.Error(f"Please upload an image when using \"Resize according to Reference\".")
if self.transformer.config.in_channels == self.vae.config.latent_channels and start_image is not None:
if is_api:
return "", f"Please select an image to video pretrained model while using image to video."
else:
raise gr.Error(f"Please select an image to video pretrained model while using image to video.")
if self.transformer.config.in_channels == self.vae.config.latent_channels and generation_method == "Long Video Generation":
if is_api:
return "", f"Please select an image to video pretrained model while using long video generation."
else:
raise gr.Error(f"Please select an image to video pretrained model while using long video generation.")
if start_image is None and end_image is not None:
if is_api:
return "", f"If specifying the ending image of the video, please specify a starting image of the video."
else:
raise gr.Error(f"If specifying the ending image of the video, please specify a starting image of the video.")
def get_height_width_from_reference(
self,
base_resolution,
start_image,
validation_video,
control_video,
):
aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()}
if self.model_type == "Inpaint":
if validation_video is not None:
original_width, original_height = Image.fromarray(cv2.VideoCapture(validation_video).read()[1]).size
else:
original_width, original_height = start_image[0].size if type(start_image) is list else Image.open(start_image).size
else:
original_width, original_height = Image.fromarray(cv2.VideoCapture(control_video).read()[1]).size
closest_size, closest_ratio = get_closest_ratio(original_height, original_width, ratios=aspect_ratio_sample_size)
height_slider, width_slider = [int(x / 16) * 16 for x in closest_size]
return height_slider, width_slider
def save_outputs(self, is_image, length_slider, sample, fps):
if not os.path.exists(self.savedir_sample):
os.makedirs(self.savedir_sample, exist_ok=True)
index = len([path for path in os.listdir(self.savedir_sample)]) + 1
prefix = str(index).zfill(3)
if is_image or length_slider == 1:
save_sample_path = os.path.join(self.savedir_sample, prefix + f".png")
image = sample[0, :, 0]
image = image.transpose(0, 1).transpose(1, 2)
image = (image * 255).numpy().astype(np.uint8)
image = Image.fromarray(image)
image.save(save_sample_path)
else:
save_sample_path = os.path.join(self.savedir_sample, prefix + f".mp4")
save_videos_grid(sample, save_sample_path, fps=fps)
return save_sample_path
def generate(
self,
diffusion_transformer_dropdown,
base_model_dropdown,
lora_model_dropdown,
lora_alpha_slider,
prompt_textbox,
negative_prompt_textbox,
sampler_dropdown,
sample_step_slider,
resize_method,
width_slider,
height_slider,
base_resolution,
generation_method,
length_slider,
overlap_video_length,
partial_video_length,
cfg_scale_slider,
start_image,
end_image,
validation_video,
validation_video_mask,
control_video,
denoise_strength,
seed_textbox,
is_api = False,
):
pass
def post_eas(
diffusion_transformer_dropdown,
base_model_dropdown, lora_model_dropdown, lora_alpha_slider,
prompt_textbox, negative_prompt_textbox,
sampler_dropdown, sample_step_slider, resize_method, width_slider, height_slider,
base_resolution, generation_method, length_slider, cfg_scale_slider,
start_image, end_image, validation_video, validation_video_mask, denoise_strength, seed_textbox,
):
if start_image is not None:
with open(start_image, 'rb') as file:
file_content = file.read()
start_image_encoded_content = base64.b64encode(file_content)
start_image = start_image_encoded_content.decode('utf-8')
if end_image is not None:
with open(end_image, 'rb') as file:
file_content = file.read()
end_image_encoded_content = base64.b64encode(file_content)
end_image = end_image_encoded_content.decode('utf-8')
if validation_video is not None:
with open(validation_video, 'rb') as file:
file_content = file.read()
validation_video_encoded_content = base64.b64encode(file_content)
validation_video = validation_video_encoded_content.decode('utf-8')
if validation_video_mask is not None:
with open(validation_video_mask, 'rb') as file:
file_content = file.read()
validation_video_mask_encoded_content = base64.b64encode(file_content)
validation_video_mask = validation_video_mask_encoded_content.decode('utf-8')
datas = {
"base_model_path": base_model_dropdown,
"lora_model_path": lora_model_dropdown,
"lora_alpha_slider": lora_alpha_slider,
"prompt_textbox": prompt_textbox,
"negative_prompt_textbox": negative_prompt_textbox,
"sampler_dropdown": sampler_dropdown,
"sample_step_slider": sample_step_slider,
"resize_method": resize_method,
"width_slider": width_slider,
"height_slider": height_slider,
"base_resolution": base_resolution,
"generation_method": generation_method,
"length_slider": length_slider,
"cfg_scale_slider": cfg_scale_slider,
"start_image": start_image,
"end_image": end_image,
"validation_video": validation_video,
"validation_video_mask": validation_video_mask,
"denoise_strength": denoise_strength,
"seed_textbox": seed_textbox,
}
session = requests.session()
session.headers.update({"Authorization": os.environ.get("EAS_TOKEN")})
response = session.post(url=f'{os.environ.get("EAS_URL")}/cogvideox_fun/infer_forward', json=datas, timeout=300)
outputs = response.json()
return outputs
class Fun_Controller_EAS:
def __init__(self, model_name, scheduler_dict, savedir_sample):
self.savedir_sample = savedir_sample
self.scheduler_dict = scheduler_dict
os.makedirs(self.savedir_sample, exist_ok=True)
def generate(
self,
diffusion_transformer_dropdown,
base_model_dropdown,
lora_model_dropdown,
lora_alpha_slider,
prompt_textbox,
negative_prompt_textbox,
sampler_dropdown,
sample_step_slider,
resize_method,
width_slider,
height_slider,
base_resolution,
generation_method,
length_slider,
cfg_scale_slider,
start_image,
end_image,
validation_video,
validation_video_mask,
denoise_strength,
seed_textbox
):
is_image = True if generation_method == "Image Generation" else False
outputs = post_eas(
diffusion_transformer_dropdown,
base_model_dropdown, lora_model_dropdown, lora_alpha_slider,
prompt_textbox, negative_prompt_textbox,
sampler_dropdown, sample_step_slider, resize_method, width_slider, height_slider,
base_resolution, generation_method, length_slider, cfg_scale_slider,
start_image, end_image, validation_video, validation_video_mask, denoise_strength,
seed_textbox
)
try:
base64_encoding = outputs["base64_encoding"]
except:
return gr.Image(visible=False, value=None), gr.Video(None, visible=True), outputs["message"]
decoded_data = base64.b64decode(base64_encoding)
if not os.path.exists(self.savedir_sample):
os.makedirs(self.savedir_sample, exist_ok=True)
index = len([path for path in os.listdir(self.savedir_sample)]) + 1
prefix = str(index).zfill(3)
if is_image or length_slider == 1:
save_sample_path = os.path.join(self.savedir_sample, prefix + f".png")
with open(save_sample_path, "wb") as file:
file.write(decoded_data)
if gradio_version_is_above_4:
return gr.Image(value=save_sample_path, visible=True), gr.Video(value=None, visible=False), "Success"
else:
return gr.Image.update(value=save_sample_path, visible=True), gr.Video.update(value=None, visible=False), "Success"
else:
save_sample_path = os.path.join(self.savedir_sample, prefix + f".mp4")
with open(save_sample_path, "wb") as file:
file.write(decoded_data)
if gradio_version_is_above_4:
return gr.Image(visible=False, value=None), gr.Video(value=save_sample_path, visible=True), "Success"
else:
return gr.Image.update(visible=False, value=None), gr.Video.update(value=save_sample_path, visible=True), "Success"
|