File size: 39,113 Bytes
a5c8285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
"""Modified from https://github.com/guoyww/AnimateDiff/blob/main/app.py
"""
import os
import random

import cv2
import gradio as gr
import numpy as np
import torch
from omegaconf import OmegaConf
from PIL import Image
from safetensors import safe_open

from ..data.bucket_sampler import ASPECT_RATIO_512, get_closest_ratio
from ..models import (AutoencoderKLWan, AutoTokenizer, CLIPModel,
                      WanT5EncoderModel, WanTransformer3DModel)
from ..pipeline import WanI2VPipeline, WanPipeline
from ..utils.fp8_optimization import (convert_model_weight_to_float8,
                                      convert_weight_dtype_wrapper,
                                      replace_parameters_by_name)
from ..utils.lora_utils import merge_lora, unmerge_lora
from ..utils.utils import (filter_kwargs, get_image_to_video_latent,
                           get_video_to_video_latent, save_videos_grid)
from .controller import (Fun_Controller, Fun_Controller_EAS, all_cheduler_dict,
                         css, ddpm_scheduler_dict, flow_scheduler_dict,
                         gradio_version, gradio_version_is_above_4)
from .ui import (create_cfg_and_seedbox,
                 create_fake_finetune_models_checkpoints,
                 create_fake_height_width, create_fake_model_checkpoints,
                 create_fake_model_type, create_finetune_models_checkpoints,
                 create_generation_method,
                 create_generation_methods_and_video_length,
                 create_height_width, create_model_checkpoints,
                 create_model_type, create_prompts, create_samplers,
                 create_ui_outputs)


class Wan_Controller(Fun_Controller):
    def update_diffusion_transformer(self, diffusion_transformer_dropdown):
        print("Update diffusion transformer")
        self.diffusion_transformer_dropdown = diffusion_transformer_dropdown
        if diffusion_transformer_dropdown == "none":
            return gr.update()
        self.vae = AutoencoderKLWan.from_pretrained(
            os.path.join(diffusion_transformer_dropdown, self.config['vae_kwargs'].get('vae_subpath', 'vae')),
            additional_kwargs=OmegaConf.to_container(self.config['vae_kwargs']),
        ).to(self.weight_dtype)

        # Get Transformer
        self.transformer = WanTransformer3DModel.from_pretrained(
            os.path.join(diffusion_transformer_dropdown, self.config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
            transformer_additional_kwargs=OmegaConf.to_container(self.config['transformer_additional_kwargs']),
            low_cpu_mem_usage=True,
            torch_dtype=self.weight_dtype,
        )

        # Get Tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(
            os.path.join(diffusion_transformer_dropdown, self.config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')),
        )

        # Get Text encoder
        self.text_encoder = WanT5EncoderModel.from_pretrained(
            os.path.join(diffusion_transformer_dropdown, self.config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
            additional_kwargs=OmegaConf.to_container(self.config['text_encoder_kwargs']),
        ).to(self.weight_dtype)
        self.text_encoder = self.text_encoder.eval()

        if self.transformer.config.in_channels != self.vae.config.latent_channels:
            # Get Clip Image Encoder
            self.clip_image_encoder = CLIPModel.from_pretrained(
                os.path.join(diffusion_transformer_dropdown, self.config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')),
            ).to(self.weight_dtype)
            self.clip_image_encoder = self.clip_image_encoder.eval()
        else:
            self.clip_image_encoder = None
        
        Choosen_Scheduler = self.scheduler_dict[list(self.scheduler_dict.keys())[0]]
        self.scheduler = Choosen_Scheduler(
            **filter_kwargs(Choosen_Scheduler, OmegaConf.to_container(self.config['scheduler_kwargs']))
        )

        # Get pipeline
        if self.model_type == "Inpaint":
            if self.transformer.config.in_channels != self.vae.config.latent_channels:
                self.pipeline = WanI2VPipeline(
                    vae=self.vae,
                    tokenizer=self.tokenizer,
                    text_encoder=self.text_encoder,
                    transformer=self.transformer,
                    scheduler=self.scheduler,
                    clip_image_encoder=self.clip_image_encoder,
                )
            else:
                self.pipeline = WanPipeline(
                    vae=self.vae,
                    tokenizer=self.tokenizer,
                    text_encoder=self.text_encoder,
                    transformer=self.transformer,
                    scheduler=self.scheduler,
                )
        else:
            raise ValueError("Not support now")

        if self.GPU_memory_mode == "sequential_cpu_offload":
            replace_parameters_by_name(self.transformer, ["modulation",], device="cuda")
            self.transformer.freqs = self.transformer.freqs.to(device="cuda")
            self.pipeline.enable_sequential_cpu_offload()
        elif self.GPU_memory_mode == "model_cpu_offload_and_qfloat8":
            convert_model_weight_to_float8(self.transformer, exclude_module_name=["modulation",])
            convert_weight_dtype_wrapper(self.transformer, self.weight_dtype)
            self.pipeline.enable_model_cpu_offload()
        else:
            self.pipeline.enable_model_cpu_offload()
        print("Update diffusion transformer done")
        return gr.update()

    def generate(
        self,
        diffusion_transformer_dropdown,
        base_model_dropdown,
        lora_model_dropdown, 
        lora_alpha_slider,
        prompt_textbox, 
        negative_prompt_textbox, 
        sampler_dropdown, 
        sample_step_slider, 
        resize_method,
        width_slider, 
        height_slider, 
        base_resolution, 
        generation_method, 
        length_slider, 
        overlap_video_length, 
        partial_video_length, 
        cfg_scale_slider, 
        start_image, 
        end_image, 
        validation_video,
        validation_video_mask,
        control_video,
        denoise_strength,
        seed_textbox,
        is_api = False,
    ):
        self.clear_cache()

        self.input_check(
            resize_method, generation_method, start_image, end_image, validation_video,control_video, is_api
        )
        is_image = True if generation_method == "Image Generation" else False

        if self.base_model_path != base_model_dropdown:
            self.update_base_model(base_model_dropdown)

        if self.lora_model_path != lora_model_dropdown:
            self.update_lora_model(lora_model_dropdown)

        self.pipeline.scheduler = self.scheduler_dict[sampler_dropdown].from_config(self.pipeline.scheduler.config)

        if resize_method == "Resize according to Reference":
            height_slider, width_slider = self.get_height_width_from_reference(
                base_resolution, start_image, validation_video, control_video,
            )
        if self.lora_model_path != "none":
            # lora part
            self.pipeline = merge_lora(self.pipeline, self.lora_model_path, multiplier=lora_alpha_slider)

        if int(seed_textbox) != -1 and seed_textbox != "": torch.manual_seed(int(seed_textbox))
        else: seed_textbox = np.random.randint(0, 1e10)
        generator = torch.Generator(device="cuda").manual_seed(int(seed_textbox))
        
        try:
            if self.model_type == "Inpaint":
                if self.transformer.config.in_channels != self.vae.config.latent_channels:
                    if generation_method == "Long Video Generation":
                        if validation_video is not None:
                            raise gr.Error(f"Video to Video is not Support Long Video Generation now.")
                        init_frames = 0
                        last_frames = init_frames + partial_video_length
                        while init_frames < length_slider:
                            if last_frames >= length_slider:
                                _partial_video_length = length_slider - init_frames
                                _partial_video_length = int((_partial_video_length - 1) // self.vae.config.temporal_compression_ratio * self.vae.config.temporal_compression_ratio) + 1
                                
                                if _partial_video_length <= 0:
                                    break
                            else:
                                _partial_video_length = partial_video_length

                            if last_frames >= length_slider:
                                input_video, input_video_mask, clip_image = get_image_to_video_latent(start_image, end_image, video_length=_partial_video_length, sample_size=(height_slider, width_slider))
                            else:
                                input_video, input_video_mask, clip_image = get_image_to_video_latent(start_image, None, video_length=_partial_video_length, sample_size=(height_slider, width_slider))

                            with torch.no_grad():
                                sample = self.pipeline(
                                    prompt_textbox, 
                                    negative_prompt     = negative_prompt_textbox,
                                    num_inference_steps = sample_step_slider,
                                    guidance_scale      = cfg_scale_slider,
                                    width               = width_slider,
                                    height              = height_slider,
                                    num_frames          = _partial_video_length,
                                    generator           = generator,

                                    video        = input_video,
                                    mask_video   = input_video_mask,
                                    clip_image   = clip_image
                                ).videos
                            
                            if init_frames != 0:
                                mix_ratio = torch.from_numpy(
                                    np.array([float(_index) / float(overlap_video_length) for _index in range(overlap_video_length)], np.float32)
                                ).unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                                
                                new_sample[:, :, -overlap_video_length:] = new_sample[:, :, -overlap_video_length:] * (1 - mix_ratio) + \
                                    sample[:, :, :overlap_video_length] * mix_ratio
                                new_sample = torch.cat([new_sample, sample[:, :, overlap_video_length:]], dim = 2)

                                sample = new_sample
                            else:
                                new_sample = sample

                            if last_frames >= length_slider:
                                break

                            start_image = [
                                Image.fromarray(
                                    (sample[0, :, _index].transpose(0, 1).transpose(1, 2) * 255).numpy().astype(np.uint8)
                                ) for _index in range(-overlap_video_length, 0)
                            ]

                            init_frames = init_frames + _partial_video_length - overlap_video_length
                            last_frames = init_frames + _partial_video_length
                    else:
                        if validation_video is not None:
                            input_video, input_video_mask, clip_image = get_video_to_video_latent(validation_video, length_slider if not is_image else 1, sample_size=(height_slider, width_slider), validation_video_mask=validation_video_mask, fps=16)
                            strength = denoise_strength
                        else:
                            input_video, input_video_mask, clip_image = get_image_to_video_latent(start_image, end_image, length_slider if not is_image else 1, sample_size=(height_slider, width_slider))
                            strength = 1

                        sample = self.pipeline(
                            prompt_textbox,
                            negative_prompt     = negative_prompt_textbox,
                            num_inference_steps = sample_step_slider,
                            guidance_scale      = cfg_scale_slider,
                            width               = width_slider,
                            height              = height_slider,
                            num_frames          = length_slider if not is_image else 1,
                            generator           = generator,

                            video        = input_video,
                            mask_video   = input_video_mask,
                            clip_image   = clip_image
                        ).videos
                else:
                    sample = self.pipeline(
                        prompt_textbox,
                        negative_prompt     = negative_prompt_textbox,
                        num_inference_steps = sample_step_slider,
                        guidance_scale      = cfg_scale_slider,
                        width               = width_slider,
                        height              = height_slider,
                        num_frames          = length_slider if not is_image else 1,
                        generator           = generator
                    ).videos
            else:
                input_video, input_video_mask, clip_image = get_video_to_video_latent(control_video, length_slider if not is_image else 1, sample_size=(height_slider, width_slider), fps=16)

                sample = self.pipeline(
                    prompt_textbox,
                    negative_prompt     = negative_prompt_textbox,
                    num_inference_steps = sample_step_slider,
                    guidance_scale      = cfg_scale_slider,
                    width               = width_slider,
                    height              = height_slider,
                    num_frames          = length_slider if not is_image else 1,
                    generator           = generator,

                    control_video = input_video,
                ).videos
        except Exception as e:
            self.clear_cache()
            if self.lora_model_path != "none":
                self.pipeline = unmerge_lora(self.pipeline, self.lora_model_path, multiplier=lora_alpha_slider)
            if is_api:
                return "", f"Error. error information is {str(e)}"
            else:
                return gr.update(), gr.update(), f"Error. error information is {str(e)}"

        self.clear_cache()
        # lora part
        if self.lora_model_path != "none":
            self.pipeline = unmerge_lora(self.pipeline, self.lora_model_path, multiplier=lora_alpha_slider)

        save_sample_path = self.save_outputs(
            is_image, length_slider, sample, fps=16
        )

        if is_image or length_slider == 1:
            if is_api:
                return save_sample_path, "Success"
            else:
                if gradio_version_is_above_4:
                    return gr.Image(value=save_sample_path, visible=True), gr.Video(value=None, visible=False), "Success"
                else:
                    return gr.Image.update(value=save_sample_path, visible=True), gr.Video.update(value=None, visible=False), "Success"
        else:
            if is_api:
                return save_sample_path, "Success"
            else:
                if gradio_version_is_above_4:
                    return gr.Image(visible=False, value=None), gr.Video(value=save_sample_path, visible=True), "Success"
                else:
                    return gr.Image.update(visible=False, value=None), gr.Video.update(value=save_sample_path, visible=True), "Success"


class Wan_Controller_Modelscope(Wan_Controller):
    def __init__(self, model_name, model_type, savedir_sample, GPU_memory_mode, scheduler_dict, weight_dtype, config_path):
        # Basic dir
        self.basedir                    = os.getcwd()
        self.personalized_model_dir     = os.path.join(self.basedir, "models", "Personalized_Model")
        self.lora_model_path            = "none"
        self.base_model_path            = "none"
        self.savedir_sample             = savedir_sample
        self.scheduler_dict             = scheduler_dict
        self.config                     = OmegaConf.load(config_path)
        self.refresh_personalized_model()
        os.makedirs(self.savedir_sample, exist_ok=True)

        # model path
        self.model_type = model_type
        self.weight_dtype = weight_dtype
        
        self.vae = AutoencoderKLWan.from_pretrained(
            os.path.join(model_name, self.config['vae_kwargs'].get('vae_subpath', 'vae')),
            additional_kwargs=OmegaConf.to_container(self.config['vae_kwargs']),
        ).to(self.weight_dtype)

        # Get Transformer
        self.transformer = WanTransformer3DModel.from_pretrained(
            os.path.join(model_name, self.config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
            transformer_additional_kwargs=OmegaConf.to_container(self.config['transformer_additional_kwargs']),
            low_cpu_mem_usage=True,
            torch_dtype=self.weight_dtype,
        )

        # Get Tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(
            os.path.join(model_name, self.config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')),
        )

        # Get Text encoder
        self.text_encoder = WanT5EncoderModel.from_pretrained(
            os.path.join(model_name, self.config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
            additional_kwargs=OmegaConf.to_container(self.config['text_encoder_kwargs']),
        ).to(self.weight_dtype)
        self.text_encoder = self.text_encoder.eval()

        if self.transformer.config.in_channels != self.vae.config.latent_channels:
            # Get Clip Image Encoder
            self.clip_image_encoder = CLIPModel.from_pretrained(
                os.path.join(model_name, self.config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')),
            ).to(self.weight_dtype)
            self.clip_image_encoder = self.clip_image_encoder.eval()
        else:
            self.clip_image_encoder = None
        
        Choosen_Scheduler = self.scheduler_dict[list(self.scheduler_dict.keys())[0]]
        self.scheduler = Choosen_Scheduler(
            **filter_kwargs(Choosen_Scheduler, OmegaConf.to_container(self.config['scheduler_kwargs']))
        )

        # Get pipeline
        if self.model_type == "Inpaint":
            if self.transformer.config.in_channels != self.vae.config.latent_channels:
                self.pipeline = WanPipeline(
                    vae=self.vae,
                    tokenizer=self.tokenizer,
                    text_encoder=self.text_encoder,
                    transformer=self.transformer,
                    scheduler=self.scheduler,
                    clip_image_encoder=self.clip_image_encoder,
                )
            else:
                self.pipeline = WanPipeline(
                    vae=self.vae,
                    tokenizer=self.tokenizer,
                    text_encoder=self.text_encoder,
                    transformer=self.transformer,
                    scheduler=self.scheduler,
                )
        else:
            raise ValueError("Not support now")
    
        if GPU_memory_mode == "sequential_cpu_offload":
            replace_parameters_by_name(self.transformer, ["modulation",], device="cuda")
            self.transformer.freqs = self.transformer.freqs.to(device="cuda")
            self.pipeline.enable_sequential_cpu_offload()
        elif GPU_memory_mode == "model_cpu_offload_and_qfloat8":
            convert_model_weight_to_float8(self.transformer, exclude_module_name=["modulation",])
            convert_weight_dtype_wrapper(self.transformer, self.weight_dtype)
            self.pipeline.enable_model_cpu_offload()
        else:
            self.pipeline.enable_model_cpu_offload()
        print("Update diffusion transformer done")

Wan_Controller_EAS = Fun_Controller_EAS

def ui(GPU_memory_mode, scheduler_dict, weight_dtype, config_path):
    controller = Wan_Controller(GPU_memory_mode, scheduler_dict, weight_dtype, config_path)

    with gr.Blocks(css=css) as demo:
        gr.Markdown(
            """
            # Wan:
            """
        )
        with gr.Column(variant="panel"):
            model_type = create_model_type(visible=True)
            diffusion_transformer_dropdown, diffusion_transformer_refresh_button = \
                create_model_checkpoints(controller, visible=True)
            base_model_dropdown, lora_model_dropdown, lora_alpha_slider, personalized_refresh_button = \
                create_finetune_models_checkpoints(controller, visible=True)

        with gr.Column(variant="panel"):
            prompt_textbox, negative_prompt_textbox = create_prompts(negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走")

            with gr.Row():
                with gr.Column():
                    sampler_dropdown, sample_step_slider = create_samplers(controller)

                    resize_method, width_slider, height_slider, base_resolution = create_height_width(
                        default_height = 480, default_width = 832, maximum_height = 1344,
                        maximum_width = 1344,
                    )
                    generation_method, length_slider, overlap_video_length, partial_video_length = \
                        create_generation_methods_and_video_length(
                            ["Video Generation", "Image Generation"],
                            default_video_length=81,
                            maximum_video_length=81,
                        )
                    image_to_video_col, video_to_video_col, control_video_col, source_method, start_image, template_gallery, end_image, validation_video, validation_video_mask, denoise_strength, control_video = create_generation_method(
                        ["Text to Video (文本到视频)", "Image to Video (图片到视频)"], prompt_textbox, support_end_image=False
                    )
                    cfg_scale_slider, seed_textbox, seed_button = create_cfg_and_seedbox(gradio_version_is_above_4)

                    generate_button = gr.Button(value="Generate (生成)", variant='primary')
                    
                result_image, result_video, infer_progress = create_ui_outputs()

            model_type.change(
                fn=controller.update_model_type, 
                inputs=[model_type], 
                outputs=[]
            )

            def upload_generation_method(generation_method):
                if generation_method == "Video Generation":
                    return [gr.update(visible=True, maximum=81, value=81, interactive=True), gr.update(visible=False), gr.update(visible=False)]
                elif generation_method == "Image Generation":
                    return [gr.update(minimum=1, maximum=1, value=1, interactive=False), gr.update(visible=False), gr.update(visible=False)]
                else:
                    return [gr.update(visible=True, maximum=1344), gr.update(visible=True), gr.update(visible=True)]
            generation_method.change(
                upload_generation_method, generation_method, [length_slider, overlap_video_length, partial_video_length]
            )

            def upload_source_method(source_method):
                if source_method == "Text to Video (文本到视频)":
                    return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)]
                elif source_method == "Image to Video (图片到视频)":
                    return [gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(), gr.update(), gr.update(value=None), gr.update(value=None), gr.update(value=None)]
                elif source_method == "Video to Video (视频到视频)":
                    return [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(), gr.update(), gr.update(value=None)]
                else:
                    return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update()]
            source_method.change(
                upload_source_method, source_method, [
                    image_to_video_col, video_to_video_col, control_video_col, start_image, end_image, 
                    validation_video, validation_video_mask, control_video
                ]
            )

            def upload_resize_method(resize_method):
                if resize_method == "Generate by":
                    return [gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)]
                else:
                    return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)]
            resize_method.change(
                upload_resize_method, resize_method, [width_slider, height_slider, base_resolution]
            )

            generate_button.click(
                fn=controller.generate,
                inputs=[
                    diffusion_transformer_dropdown,
                    base_model_dropdown,
                    lora_model_dropdown,
                    lora_alpha_slider,
                    prompt_textbox, 
                    negative_prompt_textbox, 
                    sampler_dropdown, 
                    sample_step_slider, 
                    resize_method,
                    width_slider, 
                    height_slider, 
                    base_resolution, 
                    generation_method, 
                    length_slider, 
                    overlap_video_length, 
                    partial_video_length, 
                    cfg_scale_slider, 
                    start_image, 
                    end_image, 
                    validation_video,
                    validation_video_mask,
                    control_video,
                    denoise_strength, 
                    seed_textbox,
                ],
                outputs=[result_image, result_video, infer_progress]
            )
    return demo, controller

def ui_modelscope(model_name, model_type, savedir_sample, GPU_memory_mode, scheduler_dict, weight_dtype, config_path):
    controller = Wan_Controller_Modelscope(model_name, model_type, savedir_sample, GPU_memory_mode, scheduler_dict, weight_dtype, config_path)

    with gr.Blocks(css=css) as demo:
        gr.Markdown(
            """
            # Wan:
            """
        )
        with gr.Column(variant="panel"):
            model_type = create_fake_model_type(visible=True)
            diffusion_transformer_dropdown = create_fake_model_checkpoints(model_name, visible=True)
            base_model_dropdown, lora_model_dropdown, lora_alpha_slider = create_fake_finetune_models_checkpoints(visible=True)
        
        with gr.Column(variant="panel"):
            prompt_textbox, negative_prompt_textbox = create_prompts(negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走")

            with gr.Row():
                with gr.Column():
                    sampler_dropdown, sample_step_slider = create_samplers(controller)

                    resize_method, width_slider, height_slider, base_resolution = create_height_width(
                        default_height = 480, default_width = 832, maximum_height = 1344,
                        maximum_width = 1344,
                    )
                    generation_method, length_slider, overlap_video_length, partial_video_length = \
                        create_generation_methods_and_video_length(
                            ["Video Generation", "Image Generation"],
                            default_video_length=81,
                            maximum_video_length=81,
                        )
                    image_to_video_col, video_to_video_col, control_video_col, source_method, start_image, template_gallery, end_image, validation_video, validation_video_mask, denoise_strength, control_video = create_generation_method(
                        ["Text to Video (文本到视频)", "Image to Video (图片到视频)"], prompt_textbox
                    )
                    cfg_scale_slider, seed_textbox, seed_button = create_cfg_and_seedbox(gradio_version_is_above_4)

                    generate_button = gr.Button(value="Generate (生成)", variant='primary')

                result_image, result_video, infer_progress = create_ui_outputs()

            def upload_generation_method(generation_method):
                if generation_method == "Video Generation":
                    return gr.update(visible=True, minimum=1, maximum=81, value=81, interactive=True)
                elif generation_method == "Image Generation":
                    return gr.update(minimum=1, maximum=1, value=1, interactive=False)
            generation_method.change(
                upload_generation_method, generation_method, [length_slider]
            )

            def upload_source_method(source_method):
                if source_method == "Text to Video (文本到视频)":
                    return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)]
                elif source_method == "Image to Video (图片到视频)":
                    return [gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(), gr.update(), gr.update(value=None), gr.update(value=None), gr.update(value=None)]
                elif source_method == "Video to Video (视频到视频)":
                    return [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(), gr.update(), gr.update(value=None)]
                else:
                    return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update()]
            source_method.change(
                upload_source_method, source_method, [
                    image_to_video_col, video_to_video_col, control_video_col, start_image, end_image, 
                    validation_video, validation_video_mask, control_video
                ]
            )

            def upload_resize_method(resize_method):
                if resize_method == "Generate by":
                    return [gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)]
                else:
                    return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)]
            resize_method.change(
                upload_resize_method, resize_method, [width_slider, height_slider, base_resolution]
            )

            generate_button.click(
                fn=controller.generate,
                inputs=[
                    diffusion_transformer_dropdown,
                    base_model_dropdown,
                    lora_model_dropdown, 
                    lora_alpha_slider,
                    prompt_textbox, 
                    negative_prompt_textbox, 
                    sampler_dropdown, 
                    sample_step_slider, 
                    resize_method,
                    width_slider, 
                    height_slider, 
                    base_resolution, 
                    generation_method, 
                    length_slider, 
                    overlap_video_length, 
                    partial_video_length, 
                    cfg_scale_slider, 
                    start_image, 
                    end_image, 
                    validation_video,
                    validation_video_mask,
                    control_video,
                    denoise_strength, 
                    seed_textbox,
                ],
                outputs=[result_image, result_video, infer_progress]
            )
    return demo, controller

def ui_eas(model_name, scheduler_dict, savedir_sample, config_path):
    controller = Wan_Controller_EAS(model_name, scheduler_dict, savedir_sample)

    with gr.Blocks(css=css) as demo:
        gr.Markdown(
            """
            # Wan:
            """
        )
        with gr.Column(variant="panel"):
            diffusion_transformer_dropdown = create_fake_model_checkpoints(model_name, visible=True)
            base_model_dropdown, lora_model_dropdown, lora_alpha_slider = create_fake_finetune_models_checkpoints(visible=True)
        
        with gr.Column(variant="panel"):
            prompt_textbox, negative_prompt_textbox = create_prompts(negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走")

            with gr.Row():
                with gr.Column():
                    sampler_dropdown, sample_step_slider = create_samplers(controller, maximum_step=50)

                    resize_method, width_slider, height_slider, base_resolution = create_fake_height_width(
                        default_height = 480, default_width = 832, maximum_height = 1344,
                        maximum_width = 1344,
                    )
                    generation_method, length_slider, overlap_video_length, partial_video_length = \
                        create_generation_methods_and_video_length(
                            ["Video Generation", "Image Generation"],
                            default_video_length=81,
                            maximum_video_length=81,
                        )
                    image_to_video_col, video_to_video_col, control_video_col, source_method, start_image, template_gallery, end_image, validation_video, validation_video_mask, denoise_strength, control_video = create_generation_method(
                        ["Text to Video (文本到视频)", "Image to Video (图片到视频)"], prompt_textbox
                    )

                    cfg_scale_slider, seed_textbox, seed_button = create_cfg_and_seedbox(gradio_version_is_above_4)

                    generate_button = gr.Button(value="Generate (生成)", variant='primary')

                result_image, result_video, infer_progress = create_ui_outputs()

            def upload_generation_method(generation_method):
                if generation_method == "Video Generation":
                    return gr.update(visible=True, minimum=5, maximum=85, value=49, interactive=True)
                elif generation_method == "Image Generation":
                    return gr.update(minimum=1, maximum=1, value=1, interactive=False)
            generation_method.change(
                upload_generation_method, generation_method, [length_slider]
            )

            def upload_source_method(source_method):
                if source_method == "Text to Video (文本到视频)":
                    return [gr.update(visible=False), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)]
                elif source_method == "Image to Video (图片到视频)":
                    return [gr.update(visible=True), gr.update(visible=False), gr.update(), gr.update(), gr.update(value=None), gr.update(value=None)]
                else:
                    return [gr.update(visible=False), gr.update(visible=True), gr.update(value=None), gr.update(value=None), gr.update(), gr.update()]
            source_method.change(
                upload_source_method, source_method, [image_to_video_col, video_to_video_col, start_image, end_image, validation_video, validation_video_mask]
            )

            def upload_resize_method(resize_method):
                if resize_method == "Generate by":
                    return [gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)]
                else:
                    return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)]
            resize_method.change(
                upload_resize_method, resize_method, [width_slider, height_slider, base_resolution]
            )

            generate_button.click(
                fn=controller.generate,
                inputs=[
                    diffusion_transformer_dropdown,
                    base_model_dropdown,
                    lora_model_dropdown, 
                    lora_alpha_slider,
                    prompt_textbox, 
                    negative_prompt_textbox, 
                    sampler_dropdown, 
                    sample_step_slider, 
                    resize_method,
                    width_slider, 
                    height_slider, 
                    base_resolution, 
                    generation_method, 
                    length_slider, 
                    cfg_scale_slider, 
                    start_image, 
                    end_image, 
                    validation_video,
                    validation_video_mask,
                    denoise_strength, 
                    seed_textbox,
                ],
                outputs=[result_image, result_video, infer_progress]
            )
    return demo, controller