File size: 11,655 Bytes
a5c8285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import sys

import numpy as np
import torch
from diffusers import (CogVideoXDDIMScheduler, DDIMScheduler,
                       DPMSolverMultistepScheduler,
                       EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
                       PNDMScheduler)
from PIL import Image

current_file_path = os.path.abspath(__file__)
project_roots = [os.path.dirname(current_file_path), os.path.dirname(os.path.dirname(current_file_path)), os.path.dirname(os.path.dirname(os.path.dirname(current_file_path)))]
for project_root in project_roots:
    sys.path.insert(0, project_root) if project_root not in sys.path else None

from cogvideox.models import (AutoencoderKLCogVideoX,
                              CogVideoXTransformer3DModel, T5EncoderModel,
                              T5Tokenizer)
from cogvideox.pipeline import (CogVideoXFunPipeline,
                                CogVideoXFunInpaintPipeline)
from cogvideox.utils.fp8_optimization import convert_weight_dtype_wrapper
from cogvideox.utils.lora_utils import merge_lora, unmerge_lora
from cogvideox.utils.utils import get_image_to_video_latent, save_videos_grid

# GPU memory mode, which can be choosen in [model_cpu_offload, model_cpu_offload_and_qfloat8, sequential_cpu_offload].
# model_cpu_offload means that the entire model will be moved to the CPU after use, which can save some GPU memory.
# 
# model_cpu_offload_and_qfloat8 indicates that the entire model will be moved to the CPU after use, 
# and the transformer model has been quantized to float8, which can save more GPU memory. 
# 
# sequential_cpu_offload means that each layer of the model will be moved to the CPU after use, 
# resulting in slower speeds but saving a large amount of GPU memory.
GPU_memory_mode     = "model_cpu_offload_and_qfloat8"

# Config and model path
model_name          = "models/Diffusion_Transformer/CogVideoX-Fun-V1.1-2b-InP"

# Choose the sampler in "Euler" "Euler A" "DPM++" "PNDM" "DDIM_Cog" and "DDIM_Origin"
sampler_name        = "DDIM_Origin"

# Load pretrained model if need
transformer_path    = None 
vae_path            = None
lora_path           = None

# Other params
sample_size         = [384, 672]
# V1.0 and V1.1 support up to 49 frames of video generation,
# while V1.5 supports up to 85 frames.  
video_length        = 49
fps                 = 8

# If you want to generate ultra long videos, please set partial_video_length as the length of each sub video segment
partial_video_length = None
overlap_video_length = 4

# Use torch.float16 if GPU does not support torch.bfloat16
# ome graphics cards, such as v100, 2080ti, do not support torch.bfloat16
weight_dtype            = torch.bfloat16
# If you want to generate from text, please set the validation_image_start = None and validation_image_end = None
validation_image_start  = "asset/1.png"
validation_image_end    = None

# prompts
prompt                  = "The dog is shaking head. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic."
negative_prompt         = "The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion. "
guidance_scale          = 6.0
seed                    = 43
num_inference_steps     = 50
lora_weight             = 0.55
save_path               = "samples/cogvideox-fun-videos_i2v"

transformer = CogVideoXTransformer3DModel.from_pretrained(
    model_name, 
    subfolder="transformer",
    low_cpu_mem_usage=True,
    torch_dtype=torch.float8_e4m3fn if GPU_memory_mode == "model_cpu_offload_and_qfloat8" else weight_dtype,
).to(weight_dtype)

if transformer_path is not None:
    print(f"From checkpoint: {transformer_path}")
    if transformer_path.endswith("safetensors"):
        from safetensors.torch import load_file, safe_open
        state_dict = load_file(transformer_path)
    else:
        state_dict = torch.load(transformer_path, map_location="cpu")
    state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict

    m, u = transformer.load_state_dict(state_dict, strict=False)
    print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")

# Get Vae
vae = AutoencoderKLCogVideoX.from_pretrained(
    model_name, 
    subfolder="vae"
).to(weight_dtype)

if vae_path is not None:
    print(f"From checkpoint: {vae_path}")
    if vae_path.endswith("safetensors"):
        from safetensors.torch import load_file, safe_open
        state_dict = load_file(vae_path)
    else:
        state_dict = torch.load(vae_path, map_location="cpu")
    state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict

    m, u = vae.load_state_dict(state_dict, strict=False)
    print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")

# Get tokenizer and text_encoder
tokenizer = T5Tokenizer.from_pretrained(
    model_name, subfolder="tokenizer"
)
text_encoder = T5EncoderModel.from_pretrained(
    model_name, subfolder="text_encoder", torch_dtype=weight_dtype
)

# Get Scheduler
Choosen_Scheduler = scheduler_dict = {
    "Euler": EulerDiscreteScheduler,
    "Euler A": EulerAncestralDiscreteScheduler,
    "DPM++": DPMSolverMultistepScheduler, 
    "PNDM": PNDMScheduler,
    "DDIM_Cog": CogVideoXDDIMScheduler,
    "DDIM_Origin": DDIMScheduler,
}[sampler_name]
scheduler = Choosen_Scheduler.from_pretrained(
    model_name, 
    subfolder="scheduler"
)

if transformer.config.in_channels != vae.config.latent_channels:
    pipeline = CogVideoXFunInpaintPipeline(
        vae=vae,
        tokenizer=tokenizer,
        text_encoder=text_encoder,
        transformer=transformer,
        scheduler=scheduler,
    )
else:
    pipeline = CogVideoXFunPipeline(
        vae=vae,
        tokenizer=tokenizer,
        text_encoder=text_encoder,
        transformer=transformer,
        scheduler=scheduler,
    )
if GPU_memory_mode == "sequential_cpu_offload":
    pipeline.enable_sequential_cpu_offload()
elif GPU_memory_mode == "model_cpu_offload_and_qfloat8":
    convert_weight_dtype_wrapper(transformer, weight_dtype)
    pipeline.enable_model_cpu_offload()
else:
    pipeline.enable_model_cpu_offload()

generator = torch.Generator(device="cuda").manual_seed(seed)

if lora_path is not None:
    pipeline = merge_lora(pipeline, lora_path, lora_weight)

if partial_video_length is not None:
    partial_video_length = int((partial_video_length - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1
    latent_frames = (partial_video_length - 1) // vae.config.temporal_compression_ratio + 1
    if partial_video_length != 1 and transformer.config.patch_size_t is not None and latent_frames % transformer.config.patch_size_t != 0:
        additional_frames = transformer.config.patch_size_t - latent_frames % transformer.config.patch_size_t
        partial_video_length += additional_frames * vae.config.temporal_compression_ratio
        
    init_frames = 0
    last_frames = init_frames + partial_video_length
    while init_frames < video_length:
        if last_frames >= video_length:
            _partial_video_length = video_length - init_frames
            _partial_video_length = int((_partial_video_length - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1
            latent_frames = (_partial_video_length - 1) // vae.config.temporal_compression_ratio + 1
            if _partial_video_length != 1 and transformer.config.patch_size_t is not None and latent_frames % transformer.config.patch_size_t != 0:
                additional_frames = transformer.config.patch_size_t - latent_frames % transformer.config.patch_size_t
                _partial_video_length += additional_frames * vae.config.temporal_compression_ratio

            if _partial_video_length <= 0:
                break
        else:
            _partial_video_length = partial_video_length

        input_video, input_video_mask, clip_image = get_image_to_video_latent(validation_image, None, video_length=_partial_video_length, sample_size=sample_size)
        
        with torch.no_grad():
            sample = pipeline(
                prompt, 
                num_frames = _partial_video_length,
                negative_prompt = negative_prompt,
                height      = sample_size[0],
                width       = sample_size[1],
                generator   = generator,
                guidance_scale = guidance_scale,
                num_inference_steps = num_inference_steps,

                video        = input_video,
                mask_video   = input_video_mask
            ).videos
        
        if init_frames != 0:
            mix_ratio = torch.from_numpy(
                np.array([float(_index) / float(overlap_video_length) for _index in range(overlap_video_length)], np.float32)
            ).unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            
            new_sample[:, :, -overlap_video_length:] = new_sample[:, :, -overlap_video_length:] * (1 - mix_ratio) + \
                sample[:, :, :overlap_video_length] * mix_ratio
            new_sample = torch.cat([new_sample, sample[:, :, overlap_video_length:]], dim = 2)

            sample = new_sample
        else:
            new_sample = sample

        if last_frames >= video_length:
            break

        validation_image = [
            Image.fromarray(
                (sample[0, :, _index].transpose(0, 1).transpose(1, 2) * 255).numpy().astype(np.uint8)
            ) for _index in range(-overlap_video_length, 0)
        ]

        init_frames = init_frames + _partial_video_length - overlap_video_length
        last_frames = init_frames + _partial_video_length
else:
    video_length = int((video_length - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1
    latent_frames = (video_length - 1) // vae.config.temporal_compression_ratio + 1
    if video_length != 1 and transformer.config.patch_size_t is not None and latent_frames % transformer.config.patch_size_t != 0:
        additional_frames = transformer.config.patch_size_t - latent_frames % transformer.config.patch_size_t
        video_length += additional_frames * vae.config.temporal_compression_ratio
    input_video, input_video_mask, clip_image = get_image_to_video_latent(validation_image_start, validation_image_end, video_length=video_length, sample_size=sample_size)

    with torch.no_grad():
        sample = pipeline(
            prompt, 
            num_frames = video_length,
            negative_prompt = negative_prompt,
            height      = sample_size[0],
            width       = sample_size[1],
            generator   = generator,
            guidance_scale = guidance_scale,
            num_inference_steps = num_inference_steps,

            video        = input_video,
            mask_video   = input_video_mask
        ).videos

if lora_path is not None:
    pipeline = unmerge_lora(pipeline, lora_path, lora_weight)

if not os.path.exists(save_path):
    os.makedirs(save_path, exist_ok=True)

index = len([path for path in os.listdir(save_path)]) + 1
prefix = str(index).zfill(8)

if video_length == 1:
    video_path = os.path.join(save_path, prefix + ".png")

    image = sample[0, :, 0]
    image = image.transpose(0, 1).transpose(1, 2)
    image = (image * 255).numpy().astype(np.uint8)
    image = Image.fromarray(image)
    image.save(video_path)
else:
    video_path = os.path.join(save_path, prefix + ".mp4")
    save_videos_grid(sample, video_path, fps=fps)