Spaces:
Sleeping
Sleeping
File size: 7,504 Bytes
a5c8285 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import os
import sys
import cv2
import numpy as np
import torch
from diffusers import (CogVideoXDDIMScheduler, DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
PNDMScheduler)
from PIL import Image
from transformers import T5EncoderModel
current_file_path = os.path.abspath(__file__)
project_roots = [os.path.dirname(current_file_path), os.path.dirname(os.path.dirname(current_file_path)), os.path.dirname(os.path.dirname(os.path.dirname(current_file_path)))]
for project_root in project_roots:
sys.path.insert(0, project_root) if project_root not in sys.path else None
from cogvideox.models import (AutoencoderKLCogVideoX,
CogVideoXTransformer3DModel, T5EncoderModel,
T5Tokenizer)
from cogvideox.pipeline import (CogVideoXFunControlPipeline,
CogVideoXFunInpaintPipeline)
from cogvideox.utils.fp8_optimization import convert_weight_dtype_wrapper
from cogvideox.utils.lora_utils import merge_lora, unmerge_lora
from cogvideox.utils.utils import get_video_to_video_latent, save_videos_grid
# GPU memory mode, which can be choosen in [model_cpu_offload, model_cpu_offload_and_qfloat8, sequential_cpu_offload].
# model_cpu_offload means that the entire model will be moved to the CPU after use, which can save some GPU memory.
#
# model_cpu_offload_and_qfloat8 indicates that the entire model will be moved to the CPU after use,
# and the transformer model has been quantized to float8, which can save more GPU memory.
#
# sequential_cpu_offload means that each layer of the model will be moved to the CPU after use,
# resulting in slower speeds but saving a large amount of GPU memory.
GPU_memory_mode = "model_cpu_offload_and_qfloat8"
# model path
model_name = "models/Diffusion_Transformer/CogVideoX-Fun-V1.1-2b-Pose"
# Choose the sampler in "Euler" "Euler A" "DPM++" "PNDM" "DDIM_Cog" and "DDIM_Origin"
sampler_name = "DDIM_Origin"
# Load pretrained model if need
transformer_path = None
vae_path = None
lora_path = None
# Other params
sample_size = [672, 384]
# V1.0 and V1.1 support up to 49 frames of video generation,
# while V1.5 supports up to 85 frames.
video_length = 49
fps = 8
# Use torch.float16 if GPU does not support torch.bfloat16
# ome graphics cards, such as v100, 2080ti, do not support torch.bfloat16
weight_dtype = torch.bfloat16
control_video = "asset/pose.mp4"
# prompts
prompt = "A young woman with beautiful face, dressed in white, is moving her body. "
negative_prompt = "The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion. "
guidance_scale = 6.0
seed = 43
num_inference_steps = 50
lora_weight = 0.55
save_path = "samples/cogvideox-fun-videos_control"
transformer = CogVideoXTransformer3DModel.from_pretrained(
model_name,
subfolder="transformer",
low_cpu_mem_usage=True,
torch_dtype=torch.float8_e4m3fn if GPU_memory_mode == "model_cpu_offload_and_qfloat8" else weight_dtype,
).to(weight_dtype)
if transformer_path is not None:
print(f"From checkpoint: {transformer_path}")
if transformer_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(transformer_path)
else:
state_dict = torch.load(transformer_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = transformer.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
# Get Vae
vae = AutoencoderKLCogVideoX.from_pretrained(
model_name,
subfolder="vae"
).to(weight_dtype)
if vae_path is not None:
print(f"From checkpoint: {vae_path}")
if vae_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(vae_path)
else:
state_dict = torch.load(vae_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = vae.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
# Get tokenizer and text_encoder
tokenizer = T5Tokenizer.from_pretrained(
model_name, subfolder="tokenizer"
)
text_encoder = T5EncoderModel.from_pretrained(
model_name, subfolder="text_encoder", torch_dtype=weight_dtype
)
# Get Scheduler
Choosen_Scheduler = scheduler_dict = {
"Euler": EulerDiscreteScheduler,
"Euler A": EulerAncestralDiscreteScheduler,
"DPM++": DPMSolverMultistepScheduler,
"PNDM": PNDMScheduler,
"DDIM_Cog": CogVideoXDDIMScheduler,
"DDIM_Origin": DDIMScheduler,
}[sampler_name]
scheduler = Choosen_Scheduler.from_pretrained(
model_name,
subfolder="scheduler"
)
pipeline = CogVideoXFunControlPipeline.from_pretrained(
vae=vae,
tokenizer=tokenizer,
text_encoder=text_encoder,
transformer=transformer,
scheduler=scheduler,
)
if GPU_memory_mode == "sequential_cpu_offload":
pipeline.enable_sequential_cpu_offload()
elif GPU_memory_mode == "model_cpu_offload_and_qfloat8":
convert_weight_dtype_wrapper(transformer, weight_dtype)
pipeline.enable_model_cpu_offload()
else:
pipeline.enable_model_cpu_offload()
generator = torch.Generator(device="cuda").manual_seed(seed)
if lora_path is not None:
pipeline = merge_lora(pipeline, lora_path, lora_weight)
video_length = int((video_length - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1
latent_frames = (video_length - 1) // vae.config.temporal_compression_ratio + 1
if video_length != 1 and transformer.config.patch_size_t is not None and latent_frames % transformer.config.patch_size_t != 0:
additional_frames = transformer.config.patch_size_t - latent_frames % transformer.config.patch_size_t
video_length += additional_frames * vae.config.temporal_compression_ratio
input_video, input_video_mask, clip_image = get_video_to_video_latent(control_video, video_length=video_length, sample_size=sample_size, fps=fps)
with torch.no_grad():
sample = pipeline(
prompt,
num_frames = video_length,
negative_prompt = negative_prompt,
height = sample_size[0],
width = sample_size[1],
generator = generator,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
control_video = input_video,
).videos
if lora_path is not None:
pipeline = unmerge_lora(pipeline, lora_path, lora_weight)
if not os.path.exists(save_path):
os.makedirs(save_path, exist_ok=True)
index = len([path for path in os.listdir(save_path)]) + 1
prefix = str(index).zfill(8)
if video_length == 1:
save_sample_path = os.path.join(save_path, prefix + f".png")
image = sample[0, :, 0]
image = image.transpose(0, 1).transpose(1, 2)
image = (image * 255).numpy().astype(np.uint8)
image = Image.fromarray(image)
image.save(save_sample_path)
else:
video_path = os.path.join(save_path, prefix + ".mp4")
save_videos_grid(sample, video_path, fps=fps) |