Spaces:
Sleeping
Sleeping
"""Modified from https://github.com/guoyww/AnimateDiff/blob/main/app.py | |
""" | |
import os | |
import random | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import torch | |
from PIL import Image | |
from safetensors import safe_open | |
from ..data.bucket_sampler import ASPECT_RATIO_512, get_closest_ratio | |
from ..models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, T5Tokenizer, T5EncoderModel | |
from ..pipeline import (CogVideoXFunPipeline, CogVideoXFunControlPipeline, | |
CogVideoXFunInpaintPipeline) | |
from ..utils.fp8_optimization import convert_weight_dtype_wrapper | |
from ..utils.lora_utils import merge_lora, unmerge_lora | |
from ..utils.utils import (get_image_to_video_latent, | |
get_video_to_video_latent, save_videos_grid) | |
from .controller import (Fun_Controller, Fun_Controller_EAS, all_cheduler_dict, | |
css, ddpm_scheduler_dict, flow_scheduler_dict, | |
gradio_version, gradio_version_is_above_4) | |
from .ui import (create_cfg_and_seedbox, | |
create_fake_finetune_models_checkpoints, | |
create_fake_height_width, create_fake_model_checkpoints, | |
create_fake_model_type, create_finetune_models_checkpoints, | |
create_generation_method, | |
create_generation_methods_and_video_length, | |
create_height_width, create_model_checkpoints, | |
create_model_type, create_prompts, create_samplers, | |
create_ui_outputs) | |
class CogVideoXFunController(Fun_Controller): | |
def update_diffusion_transformer(self, diffusion_transformer_dropdown): | |
print("Update diffusion transformer") | |
self.diffusion_transformer_dropdown = diffusion_transformer_dropdown | |
if diffusion_transformer_dropdown == "none": | |
return gr.update() | |
self.vae = AutoencoderKLCogVideoX.from_pretrained( | |
diffusion_transformer_dropdown, | |
subfolder="vae", | |
).to(self.weight_dtype) | |
# Get Transformer | |
self.transformer = CogVideoXTransformer3DModel.from_pretrained( | |
diffusion_transformer_dropdown, | |
subfolder="transformer", | |
low_cpu_mem_usage=True, | |
).to(self.weight_dtype) | |
# Get tokenizer and text_encoder | |
tokenizer = T5Tokenizer.from_pretrained( | |
diffusion_transformer_dropdown, subfolder="tokenizer" | |
) | |
text_encoder = T5EncoderModel.from_pretrained( | |
diffusion_transformer_dropdown, subfolder="text_encoder", torch_dtype=self.weight_dtype | |
) | |
# Get pipeline | |
if self.model_type == "Inpaint": | |
if self.transformer.config.in_channels != self.vae.config.latent_channels: | |
self.pipeline = CogVideoXFunInpaintPipeline.from_pretrained( | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
vae=self.vae, | |
transformer=self.transformer, | |
scheduler=self.scheduler_dict[list(self.scheduler_dict.keys())[0]].from_pretrained(diffusion_transformer_dropdown, subfolder="scheduler"), | |
) | |
else: | |
self.pipeline = CogVideoXFunPipeline.from_pretrained( | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
vae=self.vae, | |
transformer=self.transformer, | |
scheduler=self.scheduler_dict[list(self.scheduler_dict.keys())[0]].from_pretrained(diffusion_transformer_dropdown, subfolder="scheduler"), | |
) | |
else: | |
self.pipeline = CogVideoXFunControlPipeline.from_pretrained( | |
diffusion_transformer_dropdown, | |
vae=self.vae, | |
transformer=self.transformer, | |
scheduler=self.scheduler_dict[list(self.scheduler_dict.keys())[0]].from_pretrained(diffusion_transformer_dropdown, subfolder="scheduler"), | |
torch_dtype=self.weight_dtype | |
) | |
if self.GPU_memory_mode == "sequential_cpu_offload": | |
self.pipeline.enable_sequential_cpu_offload() | |
elif self.GPU_memory_mode == "model_cpu_offload_and_qfloat8": | |
convert_weight_dtype_wrapper(self.pipeline.transformer, self.weight_dtype) | |
self.pipeline.enable_model_cpu_offload() | |
else: | |
self.pipeline.enable_model_cpu_offload() | |
print("Update diffusion transformer done") | |
return gr.update() | |
def generate( | |
self, | |
diffusion_transformer_dropdown, | |
base_model_dropdown, | |
lora_model_dropdown, | |
lora_alpha_slider, | |
prompt_textbox, | |
negative_prompt_textbox, | |
sampler_dropdown, | |
sample_step_slider, | |
resize_method, | |
width_slider, | |
height_slider, | |
base_resolution, | |
generation_method, | |
length_slider, | |
overlap_video_length, | |
partial_video_length, | |
cfg_scale_slider, | |
start_image, | |
end_image, | |
validation_video, | |
validation_video_mask, | |
control_video, | |
denoise_strength, | |
seed_textbox, | |
is_api = False, | |
): | |
self.clear_cache() | |
self.input_check( | |
resize_method, generation_method, start_image, end_image, validation_video,control_video, is_api | |
) | |
is_image = True if generation_method == "Image Generation" else False | |
if self.base_model_path != base_model_dropdown: | |
self.update_base_model(base_model_dropdown) | |
if self.lora_model_path != lora_model_dropdown: | |
self.update_lora_model(lora_model_dropdown) | |
self.pipeline.scheduler = self.scheduler_dict[sampler_dropdown].from_config(self.pipeline.scheduler.config) | |
if resize_method == "Resize according to Reference": | |
height_slider, width_slider = self.get_height_width_from_reference( | |
base_resolution, start_image, validation_video, control_video, | |
) | |
if self.lora_model_path != "none": | |
# lora part | |
self.pipeline = merge_lora(self.pipeline, self.lora_model_path, multiplier=lora_alpha_slider) | |
if int(seed_textbox) != -1 and seed_textbox != "": torch.manual_seed(int(seed_textbox)) | |
else: seed_textbox = np.random.randint(0, 1e10) | |
generator = torch.Generator(device="cuda").manual_seed(int(seed_textbox)) | |
try: | |
if self.model_type == "Inpaint": | |
if self.transformer.config.in_channels != self.vae.config.latent_channels: | |
if generation_method == "Long Video Generation": | |
if validation_video is not None: | |
raise gr.Error(f"Video to Video is not Support Long Video Generation now.") | |
init_frames = 0 | |
last_frames = init_frames + partial_video_length | |
while init_frames < length_slider: | |
if last_frames >= length_slider: | |
_partial_video_length = length_slider - init_frames | |
_partial_video_length = int((_partial_video_length - 1) // self.vae.config.temporal_compression_ratio * self.vae.config.temporal_compression_ratio) + 1 | |
if _partial_video_length <= 0: | |
break | |
else: | |
_partial_video_length = partial_video_length | |
if last_frames >= length_slider: | |
input_video, input_video_mask, clip_image = get_image_to_video_latent(start_image, end_image, video_length=_partial_video_length, sample_size=(height_slider, width_slider)) | |
else: | |
input_video, input_video_mask, clip_image = get_image_to_video_latent(start_image, None, video_length=_partial_video_length, sample_size=(height_slider, width_slider)) | |
with torch.no_grad(): | |
sample = self.pipeline( | |
prompt_textbox, | |
negative_prompt = negative_prompt_textbox, | |
num_inference_steps = sample_step_slider, | |
guidance_scale = cfg_scale_slider, | |
width = width_slider, | |
height = height_slider, | |
num_frames = _partial_video_length, | |
generator = generator, | |
video = input_video, | |
mask_video = input_video_mask, | |
strength = 1, | |
).videos | |
if init_frames != 0: | |
mix_ratio = torch.from_numpy( | |
np.array([float(_index) / float(overlap_video_length) for _index in range(overlap_video_length)], np.float32) | |
).unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
new_sample[:, :, -overlap_video_length:] = new_sample[:, :, -overlap_video_length:] * (1 - mix_ratio) + \ | |
sample[:, :, :overlap_video_length] * mix_ratio | |
new_sample = torch.cat([new_sample, sample[:, :, overlap_video_length:]], dim = 2) | |
sample = new_sample | |
else: | |
new_sample = sample | |
if last_frames >= length_slider: | |
break | |
start_image = [ | |
Image.fromarray( | |
(sample[0, :, _index].transpose(0, 1).transpose(1, 2) * 255).numpy().astype(np.uint8) | |
) for _index in range(-overlap_video_length, 0) | |
] | |
init_frames = init_frames + _partial_video_length - overlap_video_length | |
last_frames = init_frames + _partial_video_length | |
else: | |
if validation_video is not None: | |
input_video, input_video_mask, clip_image = get_video_to_video_latent(validation_video, length_slider if not is_image else 1, sample_size=(height_slider, width_slider), validation_video_mask=validation_video_mask, fps=8) | |
strength = denoise_strength | |
else: | |
input_video, input_video_mask, clip_image = get_image_to_video_latent(start_image, end_image, length_slider if not is_image else 1, sample_size=(height_slider, width_slider)) | |
strength = 1 | |
sample = self.pipeline( | |
prompt_textbox, | |
negative_prompt = negative_prompt_textbox, | |
num_inference_steps = sample_step_slider, | |
guidance_scale = cfg_scale_slider, | |
width = width_slider, | |
height = height_slider, | |
num_frames = length_slider if not is_image else 1, | |
generator = generator, | |
video = input_video, | |
mask_video = input_video_mask, | |
strength = strength, | |
).videos | |
else: | |
sample = self.pipeline( | |
prompt_textbox, | |
negative_prompt = negative_prompt_textbox, | |
num_inference_steps = sample_step_slider, | |
guidance_scale = cfg_scale_slider, | |
width = width_slider, | |
height = height_slider, | |
num_frames = length_slider if not is_image else 1, | |
generator = generator | |
).videos | |
else: | |
input_video, input_video_mask, clip_image = get_video_to_video_latent(control_video, length_slider if not is_image else 1, sample_size=(height_slider, width_slider), fps=8) | |
sample = self.pipeline( | |
prompt_textbox, | |
negative_prompt = negative_prompt_textbox, | |
num_inference_steps = sample_step_slider, | |
guidance_scale = cfg_scale_slider, | |
width = width_slider, | |
height = height_slider, | |
num_frames = length_slider if not is_image else 1, | |
generator = generator, | |
control_video = input_video, | |
).videos | |
except Exception as e: | |
self.clear_cache() | |
if self.lora_model_path != "none": | |
self.pipeline = unmerge_lora(self.pipeline, self.lora_model_path, multiplier=lora_alpha_slider) | |
if is_api: | |
return "", f"Error. error information is {str(e)}" | |
else: | |
return gr.update(), gr.update(), f"Error. error information is {str(e)}" | |
self.clear_cache() | |
# lora part | |
if self.lora_model_path != "none": | |
self.pipeline = unmerge_lora(self.pipeline, self.lora_model_path, multiplier=lora_alpha_slider) | |
save_sample_path = self.save_outputs( | |
is_image, length_slider, sample, fps=8 | |
) | |
if is_image or length_slider == 1: | |
if is_api: | |
return save_sample_path, "Success" | |
else: | |
if gradio_version_is_above_4: | |
return gr.Image(value=save_sample_path, visible=True), gr.Video(value=None, visible=False), "Success" | |
else: | |
return gr.Image.update(value=save_sample_path, visible=True), gr.Video.update(value=None, visible=False), "Success" | |
else: | |
if is_api: | |
return save_sample_path, "Success" | |
else: | |
if gradio_version_is_above_4: | |
return gr.Image(visible=False, value=None), gr.Video(value=save_sample_path, visible=True), "Success" | |
else: | |
return gr.Image.update(visible=False, value=None), gr.Video.update(value=save_sample_path, visible=True), "Success" | |
class CogVideoXFunController_Modelscope(CogVideoXFunController): | |
def __init__(self, model_name, model_type, savedir_sample, GPU_memory_mode, scheduler_dict, weight_dtype): | |
# Basic dir | |
self.basedir = os.getcwd() | |
self.personalized_model_dir = os.path.join(self.basedir, "models", "Personalized_Model") | |
self.lora_model_path = "none" | |
self.base_model_path = "none" | |
self.savedir_sample = savedir_sample | |
self.scheduler_dict = scheduler_dict | |
self.refresh_personalized_model() | |
os.makedirs(self.savedir_sample, exist_ok=True) | |
# model path | |
self.model_type = model_type | |
self.weight_dtype = weight_dtype | |
self.vae = AutoencoderKLCogVideoX.from_pretrained( | |
model_name, | |
subfolder="vae", | |
).to(self.weight_dtype) | |
# Get Transformer | |
self.transformer = CogVideoXTransformer3DModel.from_pretrained( | |
model_name, | |
subfolder="transformer", | |
low_cpu_mem_usage=True, | |
).to(self.weight_dtype) | |
# Get tokenizer and text_encoder | |
tokenizer = T5Tokenizer.from_pretrained( | |
model_name, subfolder="tokenizer" | |
) | |
text_encoder = T5EncoderModel.from_pretrained( | |
model_name, subfolder="text_encoder", torch_dtype=self.weight_dtype | |
) | |
# Get pipeline | |
if model_type == "Inpaint": | |
if self.transformer.config.in_channels != self.vae.config.latent_channels: | |
self.pipeline = CogVideoXFunInpaintPipeline( | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
vae=self.vae, | |
transformer=self.transformer, | |
scheduler=self.scheduler_dict["Euler"].from_pretrained(model_name, subfolder="scheduler"), | |
) | |
else: | |
self.pipeline = CogVideoXFunPipeline( | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
vae=self.vae, | |
transformer=self.transformer, | |
scheduler=self.scheduler_dict["Euler"].from_pretrained(model_name, subfolder="scheduler"), | |
) | |
else: | |
self.pipeline = CogVideoXFunControlPipeline( | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
vae=self.vae, | |
transformer=self.transformer, | |
scheduler=self.scheduler_dict["Euler"].from_pretrained(model_name, subfolder="scheduler"), | |
) | |
if GPU_memory_mode == "sequential_cpu_offload": | |
self.pipeline.enable_sequential_cpu_offload() | |
elif GPU_memory_mode == "model_cpu_offload_and_qfloat8": | |
convert_weight_dtype_wrapper(self.pipeline.transformer, self.weight_dtype) | |
self.pipeline.enable_model_cpu_offload() | |
else: | |
self.pipeline.enable_model_cpu_offload() | |
print("Update diffusion transformer done") | |
CogVideoXFunController_EAS = Fun_Controller_EAS | |
def ui(GPU_memory_mode, scheduler_dict, weight_dtype): | |
controller = CogVideoXFunController(GPU_memory_mode, scheduler_dict, weight_dtype) | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown( | |
""" | |
# CogVideoX-Fun: | |
A CogVideoX with more flexible generation conditions, capable of producing videos of different resolutions, around 6 seconds, and fps 8 (frames 1 to 49), as well as image generated videos. | |
[Github](https://github.com/aigc-apps/CogVideoX-Fun/) | |
""" | |
) | |
with gr.Column(variant="panel"): | |
model_type = create_model_type(visible=True) | |
diffusion_transformer_dropdown, diffusion_transformer_refresh_button = \ | |
create_model_checkpoints(controller, visible=True) | |
base_model_dropdown, lora_model_dropdown, lora_alpha_slider, personalized_refresh_button = \ | |
create_finetune_models_checkpoints(controller, visible=True) | |
with gr.Column(variant="panel"): | |
prompt_textbox, negative_prompt_textbox = create_prompts() | |
with gr.Row(): | |
with gr.Column(): | |
sampler_dropdown, sample_step_slider = create_samplers(controller) | |
resize_method, width_slider, height_slider, base_resolution = create_height_width( | |
default_height = 672, default_width = 384, maximum_height = 1344, | |
maximum_width = 1344, | |
) | |
gr.Markdown( | |
""" | |
V1.0 and V1.1 support up to 49 frames of video generation, while V1.5 supports up to 85 frames. | |
(V1.0和V1.1支持最大49帧视频生成,V1.5支持最大85帧视频生成。) | |
""" | |
) | |
generation_method, length_slider, overlap_video_length, partial_video_length = \ | |
create_generation_methods_and_video_length( | |
["Video Generation", "Image Generation", "Long Video Generation"], | |
default_video_length=49, | |
maximum_video_length=85, | |
) | |
image_to_video_col, video_to_video_col, control_video_col, source_method, start_image, template_gallery, end_image, validation_video, validation_video_mask, denoise_strength, control_video = create_generation_method( | |
["Text to Video (文本到视频)", "Image to Video (图片到视频)", "Video to Video (视频到视频)", "Video Control (视频控制)"], prompt_textbox | |
) | |
cfg_scale_slider, seed_textbox, seed_button = create_cfg_and_seedbox(gradio_version_is_above_4) | |
generate_button = gr.Button(value="Generate (生成)", variant='primary') | |
result_image, result_video, infer_progress = create_ui_outputs() | |
model_type.change( | |
fn=controller.update_model_type, | |
inputs=[model_type], | |
outputs=[] | |
) | |
def upload_generation_method(generation_method): | |
if generation_method == "Video Generation": | |
return [gr.update(visible=True, maximum=85, value=49, interactive=True), gr.update(visible=False), gr.update(visible=False)] | |
elif generation_method == "Image Generation": | |
return [gr.update(minimum=1, maximum=1, value=1, interactive=False), gr.update(visible=False), gr.update(visible=False)] | |
else: | |
return [gr.update(visible=True, maximum=1344), gr.update(visible=True), gr.update(visible=True)] | |
generation_method.change( | |
upload_generation_method, generation_method, [length_slider, overlap_video_length, partial_video_length] | |
) | |
def upload_source_method(source_method): | |
if source_method == "Text to Video (文本到视频)": | |
return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)] | |
elif source_method == "Image to Video (图片到视频)": | |
return [gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(), gr.update(), gr.update(value=None), gr.update(value=None), gr.update(value=None)] | |
elif source_method == "Video to Video (视频到视频)": | |
return [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(), gr.update(), gr.update(value=None)] | |
else: | |
return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update()] | |
source_method.change( | |
upload_source_method, source_method, [ | |
image_to_video_col, video_to_video_col, control_video_col, start_image, end_image, | |
validation_video, validation_video_mask, control_video | |
] | |
) | |
def upload_resize_method(resize_method): | |
if resize_method == "Generate by": | |
return [gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)] | |
else: | |
return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)] | |
resize_method.change( | |
upload_resize_method, resize_method, [width_slider, height_slider, base_resolution] | |
) | |
generate_button.click( | |
fn=controller.generate, | |
inputs=[ | |
diffusion_transformer_dropdown, | |
base_model_dropdown, | |
lora_model_dropdown, | |
lora_alpha_slider, | |
prompt_textbox, | |
negative_prompt_textbox, | |
sampler_dropdown, | |
sample_step_slider, | |
resize_method, | |
width_slider, | |
height_slider, | |
base_resolution, | |
generation_method, | |
length_slider, | |
overlap_video_length, | |
partial_video_length, | |
cfg_scale_slider, | |
start_image, | |
end_image, | |
validation_video, | |
validation_video_mask, | |
control_video, | |
denoise_strength, | |
seed_textbox, | |
], | |
outputs=[result_image, result_video, infer_progress] | |
) | |
return demo, controller | |
def ui_modelscope(model_name, model_type, savedir_sample, GPU_memory_mode, scheduler_dict, weight_dtype): | |
controller = CogVideoXFunController_Modelscope(model_name, model_type, savedir_sample, GPU_memory_mode, scheduler_dict, weight_dtype) | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown( | |
""" | |
# CogVideoX-Fun | |
A CogVideoX with more flexible generation conditions, capable of producing videos of different resolutions, around 6 seconds, and fps 8 (frames 1 to 49), as well as image generated videos. | |
[Github](https://github.com/aigc-apps/CogVideoX-Fun/) | |
""" | |
) | |
with gr.Column(variant="panel"): | |
model_type = create_fake_model_type(visible=True) | |
diffusion_transformer_dropdown = create_fake_model_checkpoints(model_name, visible=True) | |
base_model_dropdown, lora_model_dropdown, lora_alpha_slider = create_fake_finetune_models_checkpoints(visible=True) | |
with gr.Column(variant="panel"): | |
prompt_textbox, negative_prompt_textbox = create_prompts() | |
with gr.Row(): | |
with gr.Column(): | |
sampler_dropdown, sample_step_slider = create_samplers(controller) | |
resize_method, width_slider, height_slider, base_resolution = create_height_width( | |
default_height = 672, default_width = 384, maximum_height = 1344, | |
maximum_width = 1344, | |
) | |
gr.Markdown( | |
""" | |
V1.0 and V1.1 support up to 49 frames of video generation, while V1.5 supports up to 85 frames. | |
(V1.0和V1.1支持最大49帧视频生成,V1.5支持最大85帧视频生成。) | |
""" | |
) | |
generation_method, length_slider, overlap_video_length, partial_video_length = \ | |
create_generation_methods_and_video_length( | |
["Video Generation", "Image Generation"], | |
default_video_length=49, | |
maximum_video_length=85, | |
) | |
image_to_video_col, video_to_video_col, control_video_col, source_method, start_image, template_gallery, end_image, validation_video, validation_video_mask, denoise_strength, control_video = create_generation_method( | |
["Text to Video (文本到视频)", "Image to Video (图片到视频)", "Video to Video (视频到视频)", "Video Control (视频控制)"], prompt_textbox | |
) | |
cfg_scale_slider, seed_textbox, seed_button = create_cfg_and_seedbox(gradio_version_is_above_4) | |
generate_button = gr.Button(value="Generate (生成)", variant='primary') | |
result_image, result_video, infer_progress = create_ui_outputs() | |
def upload_generation_method(generation_method): | |
if generation_method == "Video Generation": | |
return gr.update(visible=True, minimum=8, maximum=85, value=49, interactive=True) | |
elif generation_method == "Image Generation": | |
return gr.update(minimum=1, maximum=1, value=1, interactive=False) | |
generation_method.change( | |
upload_generation_method, generation_method, [length_slider] | |
) | |
def upload_source_method(source_method): | |
if source_method == "Text to Video (文本到视频)": | |
return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)] | |
elif source_method == "Image to Video (图片到视频)": | |
return [gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(), gr.update(), gr.update(value=None), gr.update(value=None), gr.update(value=None)] | |
elif source_method == "Video to Video (视频到视频)": | |
return [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(), gr.update(), gr.update(value=None)] | |
else: | |
return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update()] | |
source_method.change( | |
upload_source_method, source_method, [ | |
image_to_video_col, video_to_video_col, control_video_col, start_image, end_image, | |
validation_video, validation_video_mask, control_video | |
] | |
) | |
def upload_resize_method(resize_method): | |
if resize_method == "Generate by": | |
return [gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)] | |
else: | |
return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)] | |
resize_method.change( | |
upload_resize_method, resize_method, [width_slider, height_slider, base_resolution] | |
) | |
generate_button.click( | |
fn=controller.generate, | |
inputs=[ | |
diffusion_transformer_dropdown, | |
base_model_dropdown, | |
lora_model_dropdown, | |
lora_alpha_slider, | |
prompt_textbox, | |
negative_prompt_textbox, | |
sampler_dropdown, | |
sample_step_slider, | |
resize_method, | |
width_slider, | |
height_slider, | |
base_resolution, | |
generation_method, | |
length_slider, | |
overlap_video_length, | |
partial_video_length, | |
cfg_scale_slider, | |
start_image, | |
end_image, | |
validation_video, | |
validation_video_mask, | |
control_video, | |
denoise_strength, | |
seed_textbox, | |
], | |
outputs=[result_image, result_video, infer_progress] | |
) | |
return demo, controller | |
def ui_eas(model_name, scheduler_dict, savedir_sample): | |
controller = CogVideoXFunController_EAS(model_name, scheduler_dict, savedir_sample) | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown( | |
""" | |
# CogVideoX-Fun | |
A CogVideoX with more flexible generation conditions, capable of producing videos of different resolutions, around 6 seconds, and fps 8 (frames 1 to 49), as well as image generated videos. | |
[Github](https://github.com/aigc-apps/CogVideoX-Fun/) | |
""" | |
) | |
with gr.Column(variant="panel"): | |
diffusion_transformer_dropdown = create_fake_model_checkpoints(model_name, visible=True) | |
base_model_dropdown, lora_model_dropdown, lora_alpha_slider = create_fake_finetune_models_checkpoints(visible=True) | |
with gr.Column(variant="panel"): | |
prompt_textbox, negative_prompt_textbox = create_prompts() | |
with gr.Row(): | |
with gr.Column(): | |
sampler_dropdown, sample_step_slider = create_samplers(controller, maximum_step=50) | |
resize_method, width_slider, height_slider, base_resolution = create_fake_height_width( | |
default_height = 672, default_width = 384, maximum_height = 1344, | |
maximum_width = 1344, | |
) | |
gr.Markdown( | |
""" | |
V1.0 and V1.1 support up to 49 frames of video generation, while V1.5 supports up to 85 frames. | |
(V1.0和V1.1支持最大49帧视频生成,V1.5支持最大85帧视频生成。) | |
""" | |
) | |
generation_method, length_slider, overlap_video_length, partial_video_length = \ | |
create_generation_methods_and_video_length( | |
["Video Generation", "Image Generation"], | |
default_video_length=49, | |
maximum_video_length=85, | |
) | |
image_to_video_col, video_to_video_col, control_video_col, source_method, start_image, template_gallery, end_image, validation_video, validation_video_mask, denoise_strength, control_video = create_generation_method( | |
["Text to Video (文本到视频)", "Image to Video (图片到视频)", "Video to Video (视频到视频)"], prompt_textbox | |
) | |
cfg_scale_slider, seed_textbox, seed_button = create_cfg_and_seedbox(gradio_version_is_above_4) | |
generate_button = gr.Button(value="Generate (生成)", variant='primary') | |
result_image, result_video, infer_progress = create_ui_outputs() | |
def upload_generation_method(generation_method): | |
if generation_method == "Video Generation": | |
return gr.update(visible=True, minimum=5, maximum=85, value=49, interactive=True) | |
elif generation_method == "Image Generation": | |
return gr.update(minimum=1, maximum=1, value=1, interactive=False) | |
generation_method.change( | |
upload_generation_method, generation_method, [length_slider] | |
) | |
def upload_source_method(source_method): | |
if source_method == "Text to Video (文本到视频)": | |
return [gr.update(visible=False), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)] | |
elif source_method == "Image to Video (图片到视频)": | |
return [gr.update(visible=True), gr.update(visible=False), gr.update(), gr.update(), gr.update(value=None), gr.update(value=None)] | |
else: | |
return [gr.update(visible=False), gr.update(visible=True), gr.update(value=None), gr.update(value=None), gr.update(), gr.update()] | |
source_method.change( | |
upload_source_method, source_method, [image_to_video_col, video_to_video_col, start_image, end_image, validation_video, validation_video_mask] | |
) | |
def upload_resize_method(resize_method): | |
if resize_method == "Generate by": | |
return [gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)] | |
else: | |
return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)] | |
resize_method.change( | |
upload_resize_method, resize_method, [width_slider, height_slider, base_resolution] | |
) | |
generate_button.click( | |
fn=controller.generate, | |
inputs=[ | |
diffusion_transformer_dropdown, | |
base_model_dropdown, | |
lora_model_dropdown, | |
lora_alpha_slider, | |
prompt_textbox, | |
negative_prompt_textbox, | |
sampler_dropdown, | |
sample_step_slider, | |
resize_method, | |
width_slider, | |
height_slider, | |
base_resolution, | |
generation_method, | |
length_slider, | |
cfg_scale_slider, | |
start_image, | |
end_image, | |
validation_video, | |
validation_video_mask, | |
denoise_strength, | |
seed_textbox, | |
], | |
outputs=[result_image, result_video, infer_progress] | |
) | |
return demo, controller |