Spaces:
Sleeping
Sleeping
import gradio as gr | |
import random | |
def create_model_type(visible): | |
gr.Markdown( | |
""" | |
### Model Type (模型的种类,正常模型还是控制模型). | |
""", | |
visible=visible, | |
) | |
with gr.Row(): | |
model_type = gr.Dropdown( | |
label="The model type of the model (模型的种类,正常模型还是控制模型)", | |
choices=["Inpaint", "Control"], | |
value="Inpaint", | |
visible=visible, | |
interactive=True, | |
) | |
return model_type | |
def create_fake_model_type(visible): | |
gr.Markdown( | |
""" | |
### Model Type (模型的种类,正常模型还是控制模型). | |
""", | |
visible=visible, | |
) | |
with gr.Row(): | |
model_type = gr.Dropdown( | |
label="The model type of the model (模型的种类,正常模型还是控制模型)", | |
choices=["Inpaint", "Control"], | |
value="Inpaint", | |
interactive=False, | |
visible=visible, | |
) | |
return model_type | |
def create_model_checkpoints(controller, visible): | |
gr.Markdown( | |
""" | |
### Model checkpoints (模型路径). | |
""" | |
) | |
with gr.Row(visible=visible): | |
diffusion_transformer_dropdown = gr.Dropdown( | |
label="Pretrained Model Path (预训练模型路径)", | |
choices=controller.diffusion_transformer_list, | |
value="none", | |
interactive=True, | |
) | |
diffusion_transformer_dropdown.change( | |
fn=controller.update_diffusion_transformer, | |
inputs=[diffusion_transformer_dropdown], | |
outputs=[diffusion_transformer_dropdown] | |
) | |
diffusion_transformer_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton") | |
def refresh_diffusion_transformer(): | |
controller.refresh_diffusion_transformer() | |
return gr.update(choices=controller.diffusion_transformer_list) | |
diffusion_transformer_refresh_button.click(fn=refresh_diffusion_transformer, inputs=[], outputs=[diffusion_transformer_dropdown]) | |
return diffusion_transformer_dropdown, diffusion_transformer_refresh_button | |
def create_fake_model_checkpoints(model_name, visible): | |
gr.Markdown( | |
""" | |
### Model checkpoints (模型路径). | |
""" | |
) | |
with gr.Row(visible=visible): | |
diffusion_transformer_dropdown = gr.Dropdown( | |
label="Pretrained Model Path (预训练模型路径)", | |
choices=[model_name], | |
value=model_name, | |
interactive=False, | |
) | |
return diffusion_transformer_dropdown | |
def create_finetune_models_checkpoints(controller, visible): | |
with gr.Row(visible=visible): | |
base_model_dropdown = gr.Dropdown( | |
label="Select base Dreambooth model (选择基模型[非必需])", | |
choices=controller.personalized_model_list, | |
value="none", | |
interactive=True, | |
) | |
lora_model_dropdown = gr.Dropdown( | |
label="Select LoRA model (选择LoRA模型[非必需])", | |
choices=["none"] + controller.personalized_model_list, | |
value="none", | |
interactive=True, | |
) | |
lora_alpha_slider = gr.Slider(label="LoRA alpha (LoRA权重)", value=0.55, minimum=0, maximum=2, interactive=True) | |
personalized_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton") | |
def update_personalized_model(): | |
controller.refresh_personalized_model() | |
return [ | |
gr.update(choices=controller.personalized_model_list), | |
gr.update(choices=["none"] + controller.personalized_model_list) | |
] | |
personalized_refresh_button.click(fn=update_personalized_model, inputs=[], outputs=[base_model_dropdown, lora_model_dropdown]) | |
return base_model_dropdown, lora_model_dropdown, lora_alpha_slider, personalized_refresh_button | |
def create_fake_finetune_models_checkpoints(visible): | |
with gr.Row(): | |
base_model_dropdown = gr.Dropdown( | |
label="Select base Dreambooth model (选择基模型[非必需])", | |
choices=["none"], | |
value="none", | |
interactive=False, | |
visible=False | |
) | |
with gr.Column(visible=False): | |
gr.Markdown( | |
""" | |
### Minimalism is an example portrait of Lora, triggered by specific prompt words. More details can be found on [Wiki](https://github.com/aigc-apps/CogVideoX-Fun/wiki/Training-Lora). | |
""" | |
) | |
with gr.Row(): | |
lora_model_dropdown = gr.Dropdown( | |
label="Select LoRA model", | |
choices=["none"], | |
value="none", | |
interactive=True, | |
) | |
lora_alpha_slider = gr.Slider(label="LoRA alpha (LoRA权重)", value=0.55, minimum=0, maximum=2, interactive=True) | |
return base_model_dropdown, lora_model_dropdown, lora_alpha_slider | |
def create_prompts( | |
prompt="A young woman with beautiful and clear eyes and blonde hair standing and white dress in a forest wearing a crown. She seems to be lost in thought, and the camera focuses on her face. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic.", | |
negative_prompt="The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion. " | |
): | |
gr.Markdown( | |
""" | |
### Configs for Generation (生成参数配置). | |
""" | |
) | |
prompt_textbox = gr.Textbox(label="Prompt (正向提示词)", lines=2, value=prompt) | |
negative_prompt_textbox = gr.Textbox(label="Negative prompt (负向提示词)", lines=2, value=negative_prompt) | |
return prompt_textbox, negative_prompt_textbox | |
def create_samplers(controller, maximum_step=100): | |
with gr.Row(): | |
sampler_dropdown = gr.Dropdown(label="Sampling method (采样器种类)", choices=list(controller.scheduler_dict.keys()), value=list(controller.scheduler_dict.keys())[0]) | |
sample_step_slider = gr.Slider(label="Sampling steps (生成步数)", value=maximum_step, minimum=10, maximum=maximum_step, step=1) | |
return sampler_dropdown, sample_step_slider | |
def create_height_width(default_height, default_width, maximum_height, maximum_width): | |
resize_method = gr.Radio( | |
["Generate by", "Resize according to Reference"], | |
value="Generate by", | |
show_label=False, | |
) | |
width_slider = gr.Slider(label="Width (视频宽度)", value=default_width, minimum=128, maximum=maximum_width, step=16) | |
height_slider = gr.Slider(label="Height (视频高度)", value=default_height, minimum=128, maximum=maximum_height, step=16) | |
base_resolution = gr.Radio(label="Base Resolution of Pretrained Models", value=512, choices=[512, 768, 960], visible=False) | |
return resize_method, width_slider, height_slider, base_resolution | |
def create_fake_height_width(default_height, default_width, maximum_height, maximum_width): | |
resize_method = gr.Radio( | |
["Generate by", "Resize according to Reference"], | |
value="Generate by", | |
show_label=False, | |
) | |
width_slider = gr.Slider(label="Width (视频宽度)", value=default_width, minimum=128, maximum=maximum_width, step=16, interactive=False) | |
height_slider = gr.Slider(label="Height (视频高度)", value=default_height, minimum=128, maximum=maximum_height, step=16, interactive=False) | |
base_resolution = gr.Radio(label="Base Resolution of Pretrained Models", value=512, choices=[512, 768, 960], interactive=False, visible=False) | |
return resize_method, width_slider, height_slider, base_resolution | |
def create_generation_methods_and_video_length( | |
generation_method_options, | |
default_video_length, | |
maximum_video_length | |
): | |
with gr.Group(): | |
generation_method = gr.Radio( | |
generation_method_options, | |
value="Video Generation", | |
show_label=False, | |
) | |
with gr.Row(): | |
length_slider = gr.Slider(label="Animation length (视频帧数)", value=default_video_length, minimum=1, maximum=maximum_video_length, step=4) | |
overlap_video_length = gr.Slider(label="Overlap length (视频续写的重叠帧数)", value=4, minimum=1, maximum=4, step=1, visible=False) | |
partial_video_length = gr.Slider(label="Partial video generation length (每个部分的视频生成帧数)", value=25, minimum=5, maximum=maximum_video_length, step=4, visible=False) | |
return generation_method, length_slider, overlap_video_length, partial_video_length | |
def create_generation_method(source_method_options, prompt_textbox, support_end_image=True): | |
source_method = gr.Radio( | |
source_method_options, | |
value="Text to Video (文本到视频)", | |
show_label=False, | |
) | |
with gr.Column(visible = False) as image_to_video_col: | |
start_image = gr.Image( | |
label="The image at the beginning of the video (图片到视频的开始图片)", show_label=True, | |
elem_id="i2v_start", sources="upload", type="filepath", | |
) | |
template_gallery_path = ["asset/1.png", "asset/2.png", "asset/3.png", "asset/4.png", "asset/5.png"] | |
def select_template(evt: gr.SelectData): | |
text = { | |
"asset/1.png": "A brown dog is shaking its head and sitting on a light colored sofa in a comfortable room. Behind the dog, there is a framed painting on the shelf surrounded by pink flowers. The soft and warm lighting in the room creates a comfortable atmosphere.", | |
"asset/2.png": "A sailboat navigates through moderately rough seas, with waves and ocean spray visible. The sailboat features a white hull and sails, accompanied by an orange sail catching the wind. The sky above shows dramatic, cloudy formations with a sunset or sunrise backdrop, casting warm colors across the scene. The water reflects the golden light, enhancing the visual contrast between the dark ocean and the bright horizon. The camera captures the scene with a dynamic and immersive angle, showcasing the movement of the boat and the energy of the ocean.", | |
"asset/3.png": "A stunningly beautiful woman with flowing long hair stands gracefully, her elegant dress rippling and billowing in the gentle wind. Petals falling off. Her serene expression and the natural movement of her attire create an enchanting and captivating scene, full of ethereal charm.", | |
"asset/4.png": "An astronaut, clad in a full space suit with a helmet, plays an electric guitar while floating in a cosmic environment filled with glowing particles and rocky textures. The scene is illuminated by a warm light source, creating dramatic shadows and contrasts. The background features a complex geometry, similar to a space station or an alien landscape, indicating a futuristic or otherworldly setting.", | |
"asset/5.png": "Fireworks light up the evening sky over a sprawling cityscape with gothic-style buildings featuring pointed towers and clock faces. The city is lit by both artificial lights from the buildings and the colorful bursts of the fireworks. The scene is viewed from an elevated angle, showcasing a vibrant urban environment set against a backdrop of a dramatic, partially cloudy sky at dusk.", | |
}[template_gallery_path[evt.index]] | |
return template_gallery_path[evt.index], text | |
template_gallery = gr.Gallery( | |
template_gallery_path, | |
columns=5, rows=1, | |
height=140, | |
allow_preview=False, | |
container=False, | |
label="Template Examples", | |
) | |
template_gallery.select(select_template, None, [start_image, prompt_textbox]) | |
with gr.Accordion("The image at the ending of the video (图片到视频的结束图片[非必需, Optional])", open=False, visible=support_end_image): | |
end_image = gr.Image(label="The image at the ending of the video (图片到视频的结束图片[非必需, Optional])", show_label=False, elem_id="i2v_end", sources="upload", type="filepath") | |
with gr.Column(visible = False) as video_to_video_col: | |
with gr.Row(): | |
validation_video = gr.Video( | |
label="The video to convert (视频转视频的参考视频)", show_label=True, | |
elem_id="v2v", sources="upload", | |
) | |
with gr.Accordion("The mask of the video to inpaint (视频重新绘制的mask[非必需, Optional])", open=False): | |
gr.Markdown( | |
""" | |
- Please set a larger denoise_strength when using validation_video_mask, such as 1.00 instead of 0.70 | |
(请设置更大的denoise_strength,当使用validation_video_mask的时候,比如1而不是0.70) | |
""" | |
) | |
validation_video_mask = gr.Image( | |
label="The mask of the video to inpaint (视频重新绘制的mask[非必需, Optional])", | |
show_label=False, elem_id="v2v_mask", sources="upload", type="filepath" | |
) | |
denoise_strength = gr.Slider(label="Denoise strength (重绘系数)", value=0.70, minimum=0.10, maximum=1.00, step=0.01) | |
with gr.Column(visible = False) as control_video_col: | |
gr.Markdown( | |
""" | |
Demo pose control video can be downloaded here [URL](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1.1/pose.mp4). | |
""" | |
) | |
control_video = gr.Video( | |
label="The control video (用于提供控制信号的video)", show_label=True, | |
elem_id="v2v_control", sources="upload", | |
) | |
return image_to_video_col, video_to_video_col, control_video_col, source_method, start_image, template_gallery, end_image, validation_video, validation_video_mask, denoise_strength, control_video | |
def create_cfg_and_seedbox(gradio_version_is_above_4): | |
cfg_scale_slider = gr.Slider(label="CFG Scale (引导系数)", value=6.0, minimum=0, maximum=20) | |
with gr.Row(): | |
seed_textbox = gr.Textbox(label="Seed (随机种子)", value=43) | |
seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton") | |
seed_button.click( | |
fn=lambda: gr.Textbox(value=random.randint(1, 1e8)) if gradio_version_is_above_4 else gr.Textbox.update(value=random.randint(1, 1e8)), | |
inputs=[], | |
outputs=[seed_textbox] | |
) | |
return cfg_scale_slider, seed_textbox, seed_button | |
def create_ui_outputs(): | |
with gr.Column(): | |
result_image = gr.Image(label="Generated Image (生成图片)", interactive=False, visible=False) | |
result_video = gr.Video(label="Generated Animation (生成视频)", interactive=False) | |
infer_progress = gr.Textbox( | |
label="Generation Info (生成信息)", | |
value="No task currently", | |
interactive=False | |
) | |
return result_image, result_video, infer_progress | |