"""Modified from https://github.com/guoyww/AnimateDiff/blob/main/app.py """ import os import random import cv2 import gradio as gr import numpy as np import torch from omegaconf import OmegaConf from PIL import Image from safetensors import safe_open from ..data.bucket_sampler import ASPECT_RATIO_512, get_closest_ratio from ..models import (AutoencoderKLWan, AutoTokenizer, CLIPModel, WanT5EncoderModel, WanTransformer3DModel) from ..pipeline import WanFunInpaintPipeline, WanFunPipeline from ..utils.fp8_optimization import (convert_model_weight_to_float8, convert_weight_dtype_wrapper, replace_parameters_by_name) from ..utils.lora_utils import merge_lora, unmerge_lora from ..utils.utils import (filter_kwargs, get_image_to_video_latent, get_video_to_video_latent, save_videos_grid) from .controller import (Fun_Controller, Fun_Controller_EAS, all_cheduler_dict, css, ddpm_scheduler_dict, flow_scheduler_dict, gradio_version, gradio_version_is_above_4) from .ui import (create_cfg_and_seedbox, create_fake_finetune_models_checkpoints, create_fake_height_width, create_fake_model_checkpoints, create_fake_model_type, create_finetune_models_checkpoints, create_generation_method, create_generation_methods_and_video_length, create_height_width, create_model_checkpoints, create_model_type, create_prompts, create_samplers, create_ui_outputs) class Wan_Fun_Controller(Fun_Controller): def update_diffusion_transformer(self, diffusion_transformer_dropdown): print("Update diffusion transformer") self.diffusion_transformer_dropdown = diffusion_transformer_dropdown if diffusion_transformer_dropdown == "none": return gr.update() self.vae = AutoencoderKLWan.from_pretrained( os.path.join(diffusion_transformer_dropdown, self.config['vae_kwargs'].get('vae_subpath', 'vae')), additional_kwargs=OmegaConf.to_container(self.config['vae_kwargs']), ).to(self.weight_dtype) # Get Transformer self.transformer = WanTransformer3DModel.from_pretrained( os.path.join(diffusion_transformer_dropdown, self.config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')), transformer_additional_kwargs=OmegaConf.to_container(self.config['transformer_additional_kwargs']), low_cpu_mem_usage=True, torch_dtype=self.weight_dtype, ) # Get Tokenizer self.tokenizer = AutoTokenizer.from_pretrained( os.path.join(diffusion_transformer_dropdown, self.config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')), ) # Get Text encoder self.text_encoder = WanT5EncoderModel.from_pretrained( os.path.join(diffusion_transformer_dropdown, self.config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')), additional_kwargs=OmegaConf.to_container(self.config['text_encoder_kwargs']), ).to(self.weight_dtype) self.text_encoder = self.text_encoder.eval() if self.transformer.config.in_channels != self.vae.config.latent_channels: # Get Clip Image Encoder self.clip_image_encoder = CLIPModel.from_pretrained( os.path.join(diffusion_transformer_dropdown, self.config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')), ).to(self.weight_dtype) self.clip_image_encoder = self.clip_image_encoder.eval() else: self.clip_image_encoder = None Choosen_Scheduler = self.scheduler_dict[list(self.scheduler_dict.keys())[0]] self.scheduler = Choosen_Scheduler( **filter_kwargs(Choosen_Scheduler, OmegaConf.to_container(self.config['scheduler_kwargs'])) ) # Get pipeline if self.model_type == "Inpaint": if self.transformer.config.in_channels != self.vae.config.latent_channels: self.pipeline = WanFunInpaintPipeline( vae=self.vae, tokenizer=self.tokenizer, text_encoder=self.text_encoder, transformer=self.transformer, scheduler=self.scheduler, clip_image_encoder=self.clip_image_encoder, ) else: self.pipeline = WanFunPipeline( vae=self.vae, tokenizer=self.tokenizer, text_encoder=self.text_encoder, transformer=self.transformer, scheduler=self.scheduler, ) else: raise ValueError("Not support now") if self.GPU_memory_mode == "sequential_cpu_offload": replace_parameters_by_name(self.transformer, ["modulation",], device="cuda") self.transformer.freqs = self.transformer.freqs.to(device="cuda") self.pipeline.enable_sequential_cpu_offload() elif self.GPU_memory_mode == "model_cpu_offload_and_qfloat8": convert_model_weight_to_float8(self.transformer, exclude_module_name=["modulation",]) convert_weight_dtype_wrapper(self.transformer, self.weight_dtype) self.pipeline.enable_model_cpu_offload() else: self.pipeline.enable_model_cpu_offload() print("Update diffusion transformer done") return gr.update() def generate( self, diffusion_transformer_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_slider, prompt_textbox, negative_prompt_textbox, sampler_dropdown, sample_step_slider, resize_method, width_slider, height_slider, base_resolution, generation_method, length_slider, overlap_video_length, partial_video_length, cfg_scale_slider, start_image, end_image, validation_video, validation_video_mask, control_video, denoise_strength, seed_textbox, is_api = False, ): self.clear_cache() self.input_check( resize_method, generation_method, start_image, end_image, validation_video,control_video, is_api ) is_image = True if generation_method == "Image Generation" else False if self.base_model_path != base_model_dropdown: self.update_base_model(base_model_dropdown) if self.lora_model_path != lora_model_dropdown: self.update_lora_model(lora_model_dropdown) self.pipeline.scheduler = self.scheduler_dict[sampler_dropdown].from_config(self.pipeline.scheduler.config) if resize_method == "Resize according to Reference": height_slider, width_slider = self.get_height_width_from_reference( base_resolution, start_image, validation_video, control_video, ) if self.lora_model_path != "none": # lora part self.pipeline = merge_lora(self.pipeline, self.lora_model_path, multiplier=lora_alpha_slider) if int(seed_textbox) != -1 and seed_textbox != "": torch.manual_seed(int(seed_textbox)) else: seed_textbox = np.random.randint(0, 1e10) generator = torch.Generator(device="cuda").manual_seed(int(seed_textbox)) try: if self.model_type == "Inpaint": if self.transformer.config.in_channels != self.vae.config.latent_channels: if generation_method == "Long Video Generation": if validation_video is not None: raise gr.Error(f"Video to Video is not Support Long Video Generation now.") init_frames = 0 last_frames = init_frames + partial_video_length while init_frames < length_slider: if last_frames >= length_slider: _partial_video_length = length_slider - init_frames _partial_video_length = int((_partial_video_length - 1) // self.vae.config.temporal_compression_ratio * self.vae.config.temporal_compression_ratio) + 1 if _partial_video_length <= 0: break else: _partial_video_length = partial_video_length if last_frames >= length_slider: input_video, input_video_mask, clip_image = get_image_to_video_latent(start_image, end_image, video_length=_partial_video_length, sample_size=(height_slider, width_slider)) else: input_video, input_video_mask, clip_image = get_image_to_video_latent(start_image, None, video_length=_partial_video_length, sample_size=(height_slider, width_slider)) with torch.no_grad(): sample = self.pipeline( prompt_textbox, negative_prompt = negative_prompt_textbox, num_inference_steps = sample_step_slider, guidance_scale = cfg_scale_slider, width = width_slider, height = height_slider, num_frames = _partial_video_length, generator = generator, video = input_video, mask_video = input_video_mask, clip_image = clip_image ).videos if init_frames != 0: mix_ratio = torch.from_numpy( np.array([float(_index) / float(overlap_video_length) for _index in range(overlap_video_length)], np.float32) ).unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) new_sample[:, :, -overlap_video_length:] = new_sample[:, :, -overlap_video_length:] * (1 - mix_ratio) + \ sample[:, :, :overlap_video_length] * mix_ratio new_sample = torch.cat([new_sample, sample[:, :, overlap_video_length:]], dim = 2) sample = new_sample else: new_sample = sample if last_frames >= length_slider: break start_image = [ Image.fromarray( (sample[0, :, _index].transpose(0, 1).transpose(1, 2) * 255).numpy().astype(np.uint8) ) for _index in range(-overlap_video_length, 0) ] init_frames = init_frames + _partial_video_length - overlap_video_length last_frames = init_frames + _partial_video_length else: if validation_video is not None: input_video, input_video_mask, clip_image = get_video_to_video_latent(validation_video, length_slider if not is_image else 1, sample_size=(height_slider, width_slider), validation_video_mask=validation_video_mask, fps=16) strength = denoise_strength else: input_video, input_video_mask, clip_image = get_image_to_video_latent(start_image, end_image, length_slider if not is_image else 1, sample_size=(height_slider, width_slider)) strength = 1 sample = self.pipeline( prompt_textbox, negative_prompt = negative_prompt_textbox, num_inference_steps = sample_step_slider, guidance_scale = cfg_scale_slider, width = width_slider, height = height_slider, num_frames = length_slider if not is_image else 1, generator = generator, video = input_video, mask_video = input_video_mask, clip_image = clip_image ).videos else: sample = self.pipeline( prompt_textbox, negative_prompt = negative_prompt_textbox, num_inference_steps = sample_step_slider, guidance_scale = cfg_scale_slider, width = width_slider, height = height_slider, num_frames = length_slider if not is_image else 1, generator = generator ).videos else: input_video, input_video_mask, clip_image = get_video_to_video_latent(control_video, length_slider if not is_image else 1, sample_size=(height_slider, width_slider), fps=16) sample = self.pipeline( prompt_textbox, negative_prompt = negative_prompt_textbox, num_inference_steps = sample_step_slider, guidance_scale = cfg_scale_slider, width = width_slider, height = height_slider, num_frames = length_slider if not is_image else 1, generator = generator, control_video = input_video, ).videos except Exception as e: self.clear_cache() if self.lora_model_path != "none": self.pipeline = unmerge_lora(self.pipeline, self.lora_model_path, multiplier=lora_alpha_slider) if is_api: return "", f"Error. error information is {str(e)}" else: return gr.update(), gr.update(), f"Error. error information is {str(e)}" self.clear_cache() # lora part if self.lora_model_path != "none": self.pipeline = unmerge_lora(self.pipeline, self.lora_model_path, multiplier=lora_alpha_slider) save_sample_path = self.save_outputs( is_image, length_slider, sample, fps=16 ) if is_image or length_slider == 1: if is_api: return save_sample_path, "Success" else: if gradio_version_is_above_4: return gr.Image(value=save_sample_path, visible=True), gr.Video(value=None, visible=False), "Success" else: return gr.Image.update(value=save_sample_path, visible=True), gr.Video.update(value=None, visible=False), "Success" else: if is_api: return save_sample_path, "Success" else: if gradio_version_is_above_4: return gr.Image(visible=False, value=None), gr.Video(value=save_sample_path, visible=True), "Success" else: return gr.Image.update(visible=False, value=None), gr.Video.update(value=save_sample_path, visible=True), "Success" class Wan_Fun_Controller_Modelscope(Wan_Fun_Controller): def __init__(self, model_name, model_type, savedir_sample, GPU_memory_mode, scheduler_dict, weight_dtype, config_path): # Basic dir self.basedir = os.getcwd() self.personalized_model_dir = os.path.join(self.basedir, "models", "Personalized_Model") self.lora_model_path = "none" self.base_model_path = "none" self.savedir_sample = savedir_sample self.scheduler_dict = scheduler_dict self.config = OmegaConf.load(config_path) self.refresh_personalized_model() os.makedirs(self.savedir_sample, exist_ok=True) # model path self.model_type = model_type self.weight_dtype = weight_dtype self.vae = AutoencoderKLWan.from_pretrained( os.path.join(model_name, self.config['vae_kwargs'].get('vae_subpath', 'vae')), additional_kwargs=OmegaConf.to_container(self.config['vae_kwargs']), ).to(self.weight_dtype) # Get Transformer self.transformer = WanTransformer3DModel.from_pretrained( os.path.join(model_name, self.config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')), transformer_additional_kwargs=OmegaConf.to_container(self.config['transformer_additional_kwargs']), low_cpu_mem_usage=True, torch_dtype=self.weight_dtype, ) # Get Tokenizer self.tokenizer = AutoTokenizer.from_pretrained( os.path.join(model_name, self.config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')), ) # Get Text encoder self.text_encoder = WanT5EncoderModel.from_pretrained( os.path.join(model_name, self.config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')), additional_kwargs=OmegaConf.to_container(self.config['text_encoder_kwargs']), ).to(self.weight_dtype) self.text_encoder = self.text_encoder.eval() if self.transformer.config.in_channels != self.vae.config.latent_channels: # Get Clip Image Encoder self.clip_image_encoder = CLIPModel.from_pretrained( os.path.join(model_name, self.config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')), ).to(self.weight_dtype) self.clip_image_encoder = self.clip_image_encoder.eval() else: self.clip_image_encoder = None Choosen_Scheduler = self.scheduler_dict[list(self.scheduler_dict.keys())[0]] self.scheduler = Choosen_Scheduler( **filter_kwargs(Choosen_Scheduler, OmegaConf.to_container(self.config['scheduler_kwargs'])) ) # Get pipeline if self.model_type == "Inpaint": if self.transformer.config.in_channels != self.vae.config.latent_channels: self.pipeline = WanFunInpaintPipeline( vae=self.vae, tokenizer=self.tokenizer, text_encoder=self.text_encoder, transformer=self.transformer, scheduler=self.scheduler, clip_image_encoder=self.clip_image_encoder, ) else: self.pipeline = WanFunPipeline( vae=self.vae, tokenizer=self.tokenizer, text_encoder=self.text_encoder, transformer=self.transformer, scheduler=self.scheduler, ) else: raise ValueError("Not support now") if GPU_memory_mode == "sequential_cpu_offload": replace_parameters_by_name(self.transformer, ["modulation",], device="cuda") self.transformer.freqs = self.transformer.freqs.to(device="cuda") self.pipeline.enable_sequential_cpu_offload() elif GPU_memory_mode == "model_cpu_offload_and_qfloat8": convert_model_weight_to_float8(self.transformer, exclude_module_name=["modulation",]) convert_weight_dtype_wrapper(self.transformer, self.weight_dtype) self.pipeline.enable_model_cpu_offload() else: self.pipeline.enable_model_cpu_offload() print("Update diffusion transformer done") Wan_Fun_Controller_EAS = Fun_Controller_EAS def ui(GPU_memory_mode, scheduler_dict, weight_dtype, config_path): controller = Wan_Fun_Controller(GPU_memory_mode, scheduler_dict, weight_dtype, config_path) with gr.Blocks(css=css) as demo: gr.Markdown( """ # Wan-Fun: A Wan with more flexible generation conditions, capable of producing videos of different resolutions, around 6 seconds, and fps 8 (frames 1 to 81), as well as image generated videos. [Github](https://github.com/aigc-apps/CogVideoX-Fun/) """ ) with gr.Column(variant="panel"): model_type = create_model_type(visible=True) diffusion_transformer_dropdown, diffusion_transformer_refresh_button = \ create_model_checkpoints(controller, visible=True) base_model_dropdown, lora_model_dropdown, lora_alpha_slider, personalized_refresh_button = \ create_finetune_models_checkpoints(controller, visible=True) with gr.Column(variant="panel"): prompt_textbox, negative_prompt_textbox = create_prompts(negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走") with gr.Row(): with gr.Column(): sampler_dropdown, sample_step_slider = create_samplers(controller) resize_method, width_slider, height_slider, base_resolution = create_height_width( default_height = 480, default_width = 832, maximum_height = 1344, maximum_width = 1344, ) generation_method, length_slider, overlap_video_length, partial_video_length = \ create_generation_methods_and_video_length( ["Video Generation", "Image Generation"], default_video_length=81, maximum_video_length=81, ) image_to_video_col, video_to_video_col, control_video_col, source_method, start_image, template_gallery, end_image, validation_video, validation_video_mask, denoise_strength, control_video = create_generation_method( ["Text to Video (文本到视频)", "Image to Video (图片到视频)"], prompt_textbox ) cfg_scale_slider, seed_textbox, seed_button = create_cfg_and_seedbox(gradio_version_is_above_4) generate_button = gr.Button(value="Generate (生成)", variant='primary') result_image, result_video, infer_progress = create_ui_outputs() model_type.change( fn=controller.update_model_type, inputs=[model_type], outputs=[] ) def upload_generation_method(generation_method): if generation_method == "Video Generation": return [gr.update(visible=True, maximum=81, value=81, interactive=True), gr.update(visible=False), gr.update(visible=False)] elif generation_method == "Image Generation": return [gr.update(minimum=1, maximum=1, value=1, interactive=False), gr.update(visible=False), gr.update(visible=False)] else: return [gr.update(visible=True, maximum=1344), gr.update(visible=True), gr.update(visible=True)] generation_method.change( upload_generation_method, generation_method, [length_slider, overlap_video_length, partial_video_length] ) def upload_source_method(source_method): if source_method == "Text to Video (文本到视频)": return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)] elif source_method == "Image to Video (图片到视频)": return [gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(), gr.update(), gr.update(value=None), gr.update(value=None), gr.update(value=None)] elif source_method == "Video to Video (视频到视频)": return [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(), gr.update(), gr.update(value=None)] else: return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update()] source_method.change( upload_source_method, source_method, [ image_to_video_col, video_to_video_col, control_video_col, start_image, end_image, validation_video, validation_video_mask, control_video ] ) def upload_resize_method(resize_method): if resize_method == "Generate by": return [gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)] else: return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)] resize_method.change( upload_resize_method, resize_method, [width_slider, height_slider, base_resolution] ) generate_button.click( fn=controller.generate, inputs=[ diffusion_transformer_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_slider, prompt_textbox, negative_prompt_textbox, sampler_dropdown, sample_step_slider, resize_method, width_slider, height_slider, base_resolution, generation_method, length_slider, overlap_video_length, partial_video_length, cfg_scale_slider, start_image, end_image, validation_video, validation_video_mask, control_video, denoise_strength, seed_textbox, ], outputs=[result_image, result_video, infer_progress] ) return demo, controller def ui_modelscope(model_name, model_type, savedir_sample, GPU_memory_mode, scheduler_dict, weight_dtype, config_path): controller = Wan_Fun_Controller_Modelscope(model_name, model_type, savedir_sample, GPU_memory_mode, scheduler_dict, weight_dtype, config_path) with gr.Blocks(css=css) as demo: gr.Markdown( """ # Wan-Fun: A Wan with more flexible generation conditions, capable of producing videos of different resolutions, around 6 seconds, and fps 8 (frames 1 to 81), as well as image generated videos. [Github](https://github.com/aigc-apps/CogVideoX-Fun/) """ ) with gr.Column(variant="panel"): model_type = create_fake_model_type(visible=True) diffusion_transformer_dropdown = create_fake_model_checkpoints(model_name, visible=True) base_model_dropdown, lora_model_dropdown, lora_alpha_slider = create_fake_finetune_models_checkpoints(visible=True) with gr.Column(variant="panel"): prompt_textbox, negative_prompt_textbox = create_prompts(negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走") with gr.Row(): with gr.Column(): sampler_dropdown, sample_step_slider = create_samplers(controller) resize_method, width_slider, height_slider, base_resolution = create_height_width( default_height = 480, default_width = 832, maximum_height = 1344, maximum_width = 1344, ) generation_method, length_slider, overlap_video_length, partial_video_length = \ create_generation_methods_and_video_length( ["Video Generation", "Image Generation"], default_video_length=81, maximum_video_length=81, ) image_to_video_col, video_to_video_col, control_video_col, source_method, start_image, template_gallery, end_image, validation_video, validation_video_mask, denoise_strength, control_video = create_generation_method( ["Text to Video (文本到视频)", "Image to Video (图片到视频)"], prompt_textbox ) cfg_scale_slider, seed_textbox, seed_button = create_cfg_and_seedbox(gradio_version_is_above_4) generate_button = gr.Button(value="Generate (生成)", variant='primary') result_image, result_video, infer_progress = create_ui_outputs() def upload_generation_method(generation_method): if generation_method == "Video Generation": return gr.update(visible=True, minimum=1, maximum=81, value=81, interactive=True) elif generation_method == "Image Generation": return gr.update(minimum=1, maximum=1, value=1, interactive=False) generation_method.change( upload_generation_method, generation_method, [length_slider] ) def upload_source_method(source_method): if source_method == "Text to Video (文本到视频)": return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)] elif source_method == "Image to Video (图片到视频)": return [gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(), gr.update(), gr.update(value=None), gr.update(value=None), gr.update(value=None)] elif source_method == "Video to Video (视频到视频)": return [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(), gr.update(), gr.update(value=None)] else: return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update()] source_method.change( upload_source_method, source_method, [ image_to_video_col, video_to_video_col, control_video_col, start_image, end_image, validation_video, validation_video_mask, control_video ] ) def upload_resize_method(resize_method): if resize_method == "Generate by": return [gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)] else: return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)] resize_method.change( upload_resize_method, resize_method, [width_slider, height_slider, base_resolution] ) generate_button.click( fn=controller.generate, inputs=[ diffusion_transformer_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_slider, prompt_textbox, negative_prompt_textbox, sampler_dropdown, sample_step_slider, resize_method, width_slider, height_slider, base_resolution, generation_method, length_slider, overlap_video_length, partial_video_length, cfg_scale_slider, start_image, end_image, validation_video, validation_video_mask, control_video, denoise_strength, seed_textbox, ], outputs=[result_image, result_video, infer_progress] ) return demo, controller def ui_eas(model_name, scheduler_dict, savedir_sample, config_path): controller = Wan_Fun_Controller_EAS(model_name, scheduler_dict, savedir_sample) with gr.Blocks(css=css) as demo: gr.Markdown( """ # Wan-Fun: A Wan with more flexible generation conditions, capable of producing videos of different resolutions, around 6 seconds, and fps 8 (frames 1 to 81), as well as image generated videos. [Github](https://github.com/aigc-apps/CogVideoX-Fun/) """ ) with gr.Column(variant="panel"): diffusion_transformer_dropdown = create_fake_model_checkpoints(model_name, visible=True) base_model_dropdown, lora_model_dropdown, lora_alpha_slider = create_fake_finetune_models_checkpoints(visible=True) with gr.Column(variant="panel"): prompt_textbox, negative_prompt_textbox = create_prompts(negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走") with gr.Row(): with gr.Column(): sampler_dropdown, sample_step_slider = create_samplers(controller, maximum_step=40) resize_method, width_slider, height_slider, base_resolution = create_fake_height_width( default_height = 480, default_width = 832, maximum_height = 1344, maximum_width = 1344, ) generation_method, length_slider, overlap_video_length, partial_video_length = \ create_generation_methods_and_video_length( ["Video Generation", "Image Generation"], default_video_length=29, maximum_video_length=29, ) image_to_video_col, video_to_video_col, control_video_col, source_method, start_image, template_gallery, end_image, validation_video, validation_video_mask, denoise_strength, control_video = create_generation_method( ["Text to Video (文本到视频)", "Image to Video (图片到视频)"], prompt_textbox ) cfg_scale_slider, seed_textbox, seed_button = create_cfg_and_seedbox(gradio_version_is_above_4) generate_button = gr.Button(value="Generate (生成)", variant='primary') result_image, result_video, infer_progress = create_ui_outputs() def upload_generation_method(generation_method): if generation_method == "Video Generation": return gr.update(visible=True, minimum=5, maximum=29, value=29, interactive=True) elif generation_method == "Image Generation": return gr.update(minimum=1, maximum=1, value=1, interactive=False) generation_method.change( upload_generation_method, generation_method, [length_slider] ) def upload_source_method(source_method): if source_method == "Text to Video (文本到视频)": return [gr.update(visible=False), gr.update(visible=False), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)] elif source_method == "Image to Video (图片到视频)": return [gr.update(visible=True), gr.update(visible=False), gr.update(), gr.update(), gr.update(value=None), gr.update(value=None)] else: return [gr.update(visible=False), gr.update(visible=True), gr.update(value=None), gr.update(value=None), gr.update(), gr.update()] source_method.change( upload_source_method, source_method, [image_to_video_col, video_to_video_col, start_image, end_image, validation_video, validation_video_mask] ) def upload_resize_method(resize_method): if resize_method == "Generate by": return [gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)] else: return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)] resize_method.change( upload_resize_method, resize_method, [width_slider, height_slider, base_resolution] ) generate_button.click( fn=controller.generate, inputs=[ diffusion_transformer_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_slider, prompt_textbox, negative_prompt_textbox, sampler_dropdown, sample_step_slider, resize_method, width_slider, height_slider, base_resolution, generation_method, length_slider, cfg_scale_slider, start_image, end_image, validation_video, validation_video_mask, denoise_strength, seed_textbox, ], outputs=[result_image, result_video, infer_progress] ) return demo, controller