Spaces:
Runtime error
Runtime error
| from predict import * | |
| from transformers import BloomTokenizerFast, BloomForCausalLM | |
| import os | |
| import gradio as gr | |
| model_path = "svjack/bloom-daliy-dialogue-english" | |
| tokenizer = BloomTokenizerFast.from_pretrained(model_path) | |
| model = BloomForCausalLM.from_pretrained(model_path) | |
| obj = Obj(model, tokenizer) | |
| example_sample = [ | |
| ["This dog is fierce,", 128], | |
| ["Do you like this film?", 64], | |
| ] | |
| def demo_func(prefix, max_length): | |
| max_length = max(int(max_length), 32) | |
| l = obj.predict(prefix, max_length=max_length)[0].split("\n-----\n") | |
| l_ = [] | |
| for ele in l: | |
| if ele not in l_: | |
| l_.append(ele) | |
| l = l_ | |
| assert type(l) == type([]) | |
| return { | |
| "Dialogue Context": l | |
| } | |
| demo = gr.Interface( | |
| fn=demo_func, | |
| inputs=[gr.Text(label = "Prefix"), | |
| gr.Number(label = "Max Length", value = 128) | |
| ], | |
| outputs="json", | |
| title=f"Bloom English Daliy Dialogue Generator π¦ πΈ demonstration", | |
| examples=example_sample if example_sample else None, | |
| cache_examples = False | |
| ) | |
| demo.launch(server_name=None, server_port=None) | |