Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
from uuid import uuid1
|
5 |
+
from PIL import Image
|
6 |
+
from zipfile import ZipFile
|
7 |
+
import pathlib
|
8 |
+
import shutil
|
9 |
+
import pandas as pd
|
10 |
+
import deepsparse
|
11 |
+
|
12 |
+
rn50_embedding_pipeline = deepsparse.Pipeline.create(
|
13 |
+
task="embedding-extraction",
|
14 |
+
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
|
15 |
+
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
|
16 |
+
emb_extraction_layer=-3, # extracts last layer before projection head and softmax
|
17 |
+
)
|
18 |
+
|
19 |
+
def zip_ims(g):
|
20 |
+
from uuid import uuid1
|
21 |
+
if g is None:
|
22 |
+
return None
|
23 |
+
l = list(map(lambda x: x["name"], g))
|
24 |
+
if not l:
|
25 |
+
return None
|
26 |
+
zip_file_name ="tmp.zip"
|
27 |
+
with ZipFile(zip_file_name ,"w") as zipObj:
|
28 |
+
for ele in l:
|
29 |
+
zipObj.write(ele, "{}.png".format(uuid1()))
|
30 |
+
#zipObj.write(file2.name, "file2")
|
31 |
+
return zip_file_name
|
32 |
+
|
33 |
+
def unzip_ims(zip_file_name):
|
34 |
+
print("call file")
|
35 |
+
if zip_file_name is None:
|
36 |
+
return {}
|
37 |
+
unzip_path = "img_dir"
|
38 |
+
if os.path.exists(unzip_path):
|
39 |
+
shutil.rmtree(unzip_path)
|
40 |
+
with ZipFile(zip_file_name) as archive:
|
41 |
+
archive.extractall(unzip_path)
|
42 |
+
im_name_l = pd.Series(
|
43 |
+
list(pathlib.Path(unzip_path).rglob("*.png")) + \
|
44 |
+
list(pathlib.Path(unzip_path).rglob("*.jpg")) + \
|
45 |
+
list(pathlib.Path(unzip_path).rglob("*.jpeg"))
|
46 |
+
).map(str).values.tolist()
|
47 |
+
embeddings = rn50_embedding_pipeline(images=im_name_l)
|
48 |
+
if os.path.exists(unzip_path):
|
49 |
+
shutil.rmtree(unzip_path)
|
50 |
+
return {
|
51 |
+
"names": im_name_l,
|
52 |
+
"embs": embeddings
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
def emb_img_func(im):
|
57 |
+
print("call im :")
|
58 |
+
if im is None:
|
59 |
+
return {}
|
60 |
+
im_obj = Image.fromarray(im)
|
61 |
+
im_name = "{}.png".format(uuid1())
|
62 |
+
im_obj.save(im_name)
|
63 |
+
embeddings = rn50_embedding_pipeline(images=[im_name])
|
64 |
+
os.remove(im_name)
|
65 |
+
return {
|
66 |
+
"names": [im_name],
|
67 |
+
"embs": embeddings
|
68 |
+
}
|
69 |
+
|
70 |
+
'''
|
71 |
+
def emb_gallery_func(gallery):
|
72 |
+
print("call ga :")
|
73 |
+
if gallery is None:
|
74 |
+
return []
|
75 |
+
im_name_l = list(map(lambda x: x["name"], images))
|
76 |
+
embeddings = rn50_embedding_pipeline(images=im_name_l)
|
77 |
+
return embeddings
|
78 |
+
'''
|
79 |
+
|
80 |
+
with gr.Blocks() as demo:
|
81 |
+
with gr.Row():
|
82 |
+
with gr.Column():
|
83 |
+
inputs_0 = gr.Image(label = "Input Image for embed")
|
84 |
+
button_0 = gr.Button("Image button")
|
85 |
+
with gr.Column():
|
86 |
+
inputs_1 = gr.File(label = "Input Images zip file for embed")
|
87 |
+
button_1 = gr.Button("Image File button")
|
88 |
+
with gr.Row():
|
89 |
+
outputs = gr.JSON(label = "Output Embeddings")
|
90 |
+
|
91 |
+
button_0.click(fn = emb_img_func, inputs = inputs_0, outputs = outputs)
|
92 |
+
button_1.click(fn = unzip_ims, inputs = inputs_1, outputs = outputs)
|
93 |
+
|
94 |
+
demo.launch("0.0.0.0")
|