Spaces:
Runtime error
Runtime error
File size: 17,164 Bytes
edff9eb adfa2a4 edff9eb a115905 edff9eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
#### pip install advertools
#### pip install emoji
#### pip install emoji-chengyu
#### pip install gradio-client
#### prefer to run in chorme, others may have problem in change hock function
import gradio as gr
import pandas as pd
import emoji
from advertools.emoji import emoji_df
from copy import deepcopy
import numpy as np
from emoji_chengyu.data import DefaultChengyuManager
from emoji_chengyu.puzzle import make_one_puzzle, gen_puzzle
from Lex import *
'''
lex = Lexica(query="man woman fire snow").images()
'''
from PIL import Image
import requests
from zipfile import ZipFile
from time import sleep
sleep_time = 0.5
from gradio_client import Client
llm_client = Client("https://svjack-wizardlm-13b-ggml.hf.space/--replicas/bnqpc/")
'''
llm_result = llm_client.predict(
"Use following emojis to generate a short description of a scene , the emojis are π¨π©π₯βοΈ", # str in 'Question/Instruction' Textbox component
0.8, # int | float (numeric value between 0.1 and 1.0) in 'Temperature' Slider component
0.95, # int | float (numeric value between 0.0 and 1.0) in 'Top-p (nucleus sampling)' Slider component
40, # int | float (numeric value between 5 and 80) in 'Top-k' Slider component
256, # int | float (numeric value between 0 and 1024) in 'Maximum new tokens' Slider component
52, # int | float in 'Seed' Number component
fn_index=1
)
'''
def run_llm_client(llm_client, prompt):
llm_result = llm_client.predict(
prompt, # str in 'Question/Instruction' Textbox component
0.8, # int | float (numeric value between 0.1 and 1.0) in 'Temperature' Slider component
0.95, # int | float (numeric value between 0.0 and 1.0) in 'Top-p (nucleus sampling)' Slider component
40, # int | float (numeric value between 5 and 80) in 'Top-k' Slider component
256, # int | float (numeric value between 0 and 1024) in 'Maximum new tokens' Slider component
52, # int | float in 'Seed' Number component
fn_index=1
)
return llm_result
def min_dim_to_size(img, size = 512):
h, w = img.size
ratio = size / max(h, w)
h, w = map(lambda x: int(x * ratio), [h, w])
return ( ratio ,img.resize((h, w)) )
def lexica(prompt, limit_size = 128, ratio_size = 256 + 128):
if not prompt or not prompt.strip():
return []
prompt = prompt.strip()
lex = Lexica(query=prompt).images()
lex = lex[:limit_size]
lex = list(map(lambda x: x.replace("full_jpg", "sm2"), lex))
lex_ = []
for ele in lex:
try:
im = Image.open(
requests.get(ele, stream = True).raw
)
lex_.append(im)
except:
print("err")
sleep(sleep_time)
assert lex_
lex = list(map(lambda x: min_dim_to_size(x, ratio_size)[1], lex_))
return lex
def search(emoji_outputs, emoji2text_or_not, llm_prompt_input, llm_client = llm_client):
assert emoji2text_or_not in ["Emoji to Text", "Only Emoji"]
if emoji2text_or_not == "Only Emoji":
l = lexica(emoji_outputs)
return (l, "")
else:
assert "{}" in llm_prompt_input
llm_prompt = llm_prompt_input.format(emoji_outputs)
llm_output = run_llm_client(llm_client, llm_prompt)
tail_list = ["someone do something"]
for tail in tail_list:
if tail in llm_output and len(llm_output.split(tail)[-1]) > (5 * 3):
llm_output = llm_output.split(tail)[-1]
l = lexica(llm_output)
return (l, llm_output)
def enterpix(prompt, limit_size = 100, ratio_size = 256 + 128, use_key = "bigThumbnailUrl"):
resp = requests.post(
url = "https://www.enterpix.app/enterpix/v1/image/prompt-search",
data= {
"length": limit_size,
"platform": "stable-diffusion,midjourney",
"prompt": prompt,
"start": 0
}
)
resp = resp.json()
resp = list(map(lambda x: x[use_key], resp["images"]))
lex_ = []
for ele in resp:
try:
im = Image.open(
requests.get(ele, stream = True).raw
)
lex_.append(im)
except:
print("err")
sleep(sleep_time)
assert lex_
resp = list(map(lambda x: min_dim_to_size(x, ratio_size)[1], lex_))
return resp
def zip_ims(g):
from uuid import uuid1
if g is None:
return None
l = list(map(lambda x: x["name"], g))
if not l:
return None
zip_file_name ="tmp.zip"
with ZipFile(zip_file_name ,"w") as zipObj:
for ele in l:
zipObj.write(ele, "{}.png".format(uuid1()))
#zipObj.write(file2.name, "file2")
return zip_file_name
emoji_order_list = [
["π", ["π₯’","πΌ", "π±", "π", "π¦"]],
["π", ["π₯°", "π", "πΊ", "π", "π©"]],
["π΅", ["π΅", "π¦", "π", "π³"]],
["π", ["π" ,"π", "πͺ", "π", "π₯"]],
["π", ["β½", "π", "π―", "π", "ποΈ"]],
#["π", ["π", "π "οΈ, "β²", "π"οΈ]],
["π", ["π", "πͺ", "π", "π",]],
["π", ["π", "β²", "π ",]],
]
sub_cate_num = 5
sub_cate_size = 36
sub_col_num = 6
def list_to_square(l, col_num = 10):
assert type(l) == type([])
row_num = len(l) // col_num
res = len(l) % col_num
if res > 0:
res_for_add = col_num - res
else:
res_for_add = 0
ll = np.asarray(l).reshape([-1, col_num]).tolist()
return ll
l_ = deepcopy(l) + [""] * res_for_add
return list_to_square(l_, col_num)
def append_emojis(selected_index: gr.SelectData, dataframe_origin, emoji_prompt):
val = dataframe_origin.iloc[selected_index.index[0], selected_index.index[1]]
if val.strip():
emoji_prompt = emoji_prompt + val
return emoji_prompt
def append_chengyu_emojis(selected_index: gr.SelectData, dataframe_origin, emoji_prompt, append_or_replace):
val = dataframe_origin.iloc[selected_index.index[0], selected_index.index[1]]
if type(val) != type("") or not val:
return emoji_prompt
assert append_or_replace in ["replace", "append"]
if append_or_replace == "append":
emoji_prompt = emoji_prompt + val.split(":")[-1]
else:
emoji_prompt = val.split(":")[-1]
return emoji_prompt
def extract_emojis(s):
#return ''.join(c for c in s if c in emoji.UNICODE_EMOJI['en'])
dl = emoji.emoji_list(s + "s")
return "".join(map(lambda x: x["emoji"], dl))
def gen_emojis_by_chengyu(words):
assert type(words) == type("")
out = DefaultChengyuManager.get_by_word(words)
if out is None:
return ""
out = "".join(make_one_puzzle(out).puzzle)
out = extract_emojis(out)
return out
def gen_emojis_by_sample(search_count=5000):
pg = gen_puzzle(manager=DefaultChengyuManager, search_count=search_count)
df = pd.DataFrame(list(map(lambda x: {
"words": "".join(x.chengyu_item.word_list),
"emoji": x.puzzle_str,
"score": sum(x.mask)
} ,pg)))
df = df[df["score"] == 4]
df = df[df["words"].map(lambda x: len(x) == 4)]
req = []
col0 = set([])
col1 = set([])
col2 = set([])
col3 = set([])
for i, r in df.iterrows():
words = r["words"]
emoji = r["emoji"]
if emoji[0] in col0:
continue
col0.add(emoji[0])
if emoji[1] in col1:
continue
col1.add(emoji[1])
if emoji[2] in col2:
continue
col2.add(emoji[2])
if emoji[3] in col3:
continue
col3.add(emoji[3])
req.append(
r.to_dict()
)
df = pd.DataFrame(req)
if len(df) < 21:
return gen_emojis_by_sample(search_count=search_count)
df = pd.DataFrame(
np.asarray(df.apply(lambda x: x.to_dict(), axis = 1).head(21).map(lambda x:
"{}:{}".format(x["words"],x["emoji"])
).tolist()).reshape(
(7, 3)
)
)
return df
def append_pure_to_input(emoji_outputs ,only_emoji_outputs):
return emoji_outputs + only_emoji_outputs
css = """
#frame span{
font-size: 1.5em; display: flex; align-items: center;
}
"""
###with gr.Blocks(css="custom.css") as demo:
with gr.Blocks(css = css) as demo:
title = gr.HTML(
"""<h1 align="center"> <font size="+10"> π Emojis to StableDiffusion World π </font> </h1>""",
elem_id="title",
)
frame_list = []
with gr.Row():
with gr.Column(label = "Emoji samples, You can click to use them"):
sub_title_0 = gr.Markdown(
value="### Emoji samples, You can click to use them",
visible=True,
#elem_id="selected_model",
)
#for group, df in emoji_df.groupby("group"):
for group_order_ele, sub_group_order_list in emoji_order_list:
#group_first = df["emoji"].iloc[0]
group_first = group_order_ele
df_group = emoji_df[emoji_df["emoji"] == group_first]["group"].iloc[0]
df = emoji_df[emoji_df["group"] == df_group]
with gr.Tab("{} {}".format(group_first, df_group)):
#for ii ,(sub_group, dff) in enumerate(df.groupby("sub_group")):
for ii in range(len(sub_group_order_list)):
sub_first = sub_group_order_list[ii]
df_sub_group = emoji_df[emoji_df["emoji"] == sub_first]["sub_group"].iloc[0]
dff = df[df["sub_group"] == df_sub_group]
if ii >= sub_cate_num:
break
sub_first = dff["emoji"].iloc[0]
sub_l = dff["emoji"].values.tolist()[:sub_cate_size]
sub_l_square = list_to_square(sub_l, sub_col_num)
g_frame = gr.DataFrame(sub_l_square,
interactive=False, headers = [''] * sub_col_num,
#datatype="markdown"
elem_id="frame",
label = "{} {}".format(sub_first, df_sub_group)
)
#g_frame = gr.Matrix(sub_l_square, label = sub_first,)
frame_list.append(g_frame)
with gr.Column():
with gr.Row():
with gr.Column():
sub_title_1 = gr.Markdown(
value="### ChengYu to Emoji combinations, You can click to use them, Don't forget edit them after click, to make it meaningful",
visible=True,
#elem_id="selected_model",
)
chengyu_frame = gr.DataFrame(gen_emojis_by_sample(),
interactive=False, headers = [''] * sub_col_num,
#datatype="markdown"
elem_id="chengyu_frame",
#label = "ChengYu to Emoji combinations, You can click to use them"
)
with gr.Row():
chengyu_reset_button = gr.Button("Reset ChengYu Emojis",
elem_id="run_button")
with gr.Row():
append_or_replace = gr.Radio(choices=["replace", "append"],
value="replace", label="ChengYu Emoji Append or Replace to below", elem_id="text_radio")
with gr.Row():
emoji_outputs = gr.Textbox(label="Emoji Prompt Output", show_label=True, lines=1, max_lines=20,
min_width = 256, placeholder="Click Emoji from left with some emoji input manually", elem_id="prompt",
interactive=True)
clean_button = gr.Button("Clean Emojis", elem_id="clean_button")
'''
with gr.Column():
clean_button = gr.Button("Clean Emojis", elem_id="clean_button")
emoji_outputs_button = gr.Button("Retrieve Images", elem_id="run_button")
'''
with gr.Row():
emoji2text_or_not = gr.Radio(choices=["Only Emoji", "Emoji to Text"],
value="Only Emoji", label="Only use Emoji to get images or translate them to Text by LLM",
elem_id="trans_radio")
with gr.Row():
llm_prompt_input = gr.Textbox(label="Emoji to Text Prompt template used by LLM", show_label=True,
lines=1, max_lines=20,
min_width = 256,
value="Use following emojis to generate a short description of a scene , use the pattern someone do something , the emojis are {}"
, elem_id="prompt",
interactive=True)
llm_outputs = gr.Textbox(label="Emoji to Text Prompt translate by LLM Output", show_label=True,
lines=1, max_lines=20,
min_width = 256, placeholder="Emoji describe by Text", elem_id="prompt",
interactive=True)
'''
with gr.Row():
emoji_gen_chengyu_input = gr.Textbox(label="ChengYu Prompt Input", show_label=False, lines=1, max_lines=20,
min_width = 256, placeholder="input ChengYu manually, like: ε±η²ΎεΎζ²»", elem_id="prompt",
interactive=True)
with gr.Row():
only_emoji_outputs = gr.Textbox(label="Only Emoji Prompt Output", show_label=False, lines=1, max_lines=20,
min_width = 256, placeholder="Filter out only emoji charactors", elem_id="prompt", interactive=True)
#gr.Slider(label='Number of images ', minimum = 4, maximum = 20, step = 1, value = 4)]
append_button = gr.Button("Append Only Emojis to Emoji Prompt Output", elem_id="append_button")
only_emoji_outputs_button = gr.Button("Retrieve Images Only Emoji", elem_id="run_button")
with gr.Row():
#text_button = gr.Button("Retrieve Images", elem_id="run_button")
emoji_outputs_button = gr.Button("Retrieve Images", elem_id="run_button")
'''
with gr.Row():
emoji_outputs_button = gr.Button("Retrieve Images", elem_id="run_button")
with gr.Row():
with gr.Column():
outputs = gr.Gallery(lable='Output gallery', elem_id="gallery",).style(grid=5,height=768 - 64 - 32,
allow_preview=False, label = "retrieve Images")
exp_title = gr.HTML(
"""<br/><br/><h5 align="center"> <font size="+1"> Emojis examples live in π travel to StableDiffusion π </font> </h5>""",
#elem_id="title",
)
gr.Examples(
[
["π", "Only Emoji"],
["π₯π²", "Only Emoji"],
["π±π½οΈπ¨", "Emoji to Text"],
["π»π¦βοΈπ", "Only Emoji"],
["ππ¦Άππ€", "Emoji to Text"],
["π©βπ¬π£βπ¨βπ¨", "Emoji to Text"],
["πππ§£πΈπ°βοΈ", "Emoji to Text"],
["ππππΆπ₯πΎπ΅πββοΈ", "Emoji to Text"],
["ππππ¨βπ§ππ₯ππ", "Emoji to Text"],
],
inputs = [emoji_outputs, emoji2text_or_not],
#label = "π Examples"
)
with gr.Row():
with gr.Tab(label = "Download"):
zip_button = gr.Button("Zip Images to Download", elem_id="zip_button")
downloads = gr.File(label = "Image zipped", elem_id = "zip_file")
for g in frame_list:
g.select(fn = append_emojis, inputs = [g, emoji_outputs], outputs = emoji_outputs)
chengyu_frame.select(fn = append_chengyu_emojis, inputs = [chengyu_frame, emoji_outputs, append_or_replace],
outputs = emoji_outputs)
chengyu_reset_button.click(fn = lambda _: gen_emojis_by_sample(), outputs = chengyu_frame)
clean_button.click(fn = lambda _: "", outputs = emoji_outputs)
#emoji_outputs.change(fn = extract_emojis, inputs = emoji_outputs, outputs = only_emoji_outputs)
'''
emoji_gen_chengyu_input.change(fn = gen_emojis_by_chengyu, inputs = emoji_gen_chengyu_input,
outputs = only_emoji_outputs)
append_button.click(fn = append_pure_to_input, inputs = [emoji_outputs ,only_emoji_outputs],
outputs = emoji_outputs)
'''
#emoji_outputs_button.click(lexica, inputs=emoji_outputs, outputs=outputs)
emoji_outputs_button.click(search,
inputs=[emoji_outputs, emoji2text_or_not, llm_prompt_input],
outputs=[outputs, llm_outputs])
zip_button.click(
zip_ims, inputs = outputs, outputs=downloads
)
demo.launch("0.0.0.0")
|