File size: 17,164 Bytes
edff9eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adfa2a4
edff9eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a115905
edff9eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
#### pip install advertools
#### pip install emoji
#### pip install emoji-chengyu
#### pip install gradio-client

#### prefer to run in chorme, others may have problem in change hock function

import gradio as gr
import pandas as pd

import emoji
from advertools.emoji import emoji_df
from copy import deepcopy
import numpy as np

from emoji_chengyu.data import DefaultChengyuManager
from emoji_chengyu.puzzle import make_one_puzzle, gen_puzzle

from Lex import *
'''
lex = Lexica(query="man woman fire snow").images()
'''
from PIL import Image
import requests

from zipfile import ZipFile

from time import sleep
sleep_time = 0.5

from gradio_client import Client
llm_client = Client("https://svjack-wizardlm-13b-ggml.hf.space/--replicas/bnqpc/")

'''
llm_result = llm_client.predict(
		"Use following emojis to generate a short description of a scene , the emojis are πŸ‘¨πŸ‘©πŸ”₯❄️",	# str  in 'Question/Instruction' Textbox component
		0.8,	# int | float (numeric value between 0.1 and 1.0) in 'Temperature' Slider component
		0.95,	# int | float (numeric value between 0.0 and 1.0) in 'Top-p (nucleus sampling)' Slider component
		40,	# int | float (numeric value between 5 and 80) in 'Top-k' Slider component
		256,	# int | float (numeric value between 0 and 1024) in 'Maximum new tokens' Slider component
		52,	# int | float  in 'Seed' Number component
		fn_index=1
)
'''

def run_llm_client(llm_client, prompt):
    llm_result = llm_client.predict(
    		prompt,	# str  in 'Question/Instruction' Textbox component
    		0.8,	# int | float (numeric value between 0.1 and 1.0) in 'Temperature' Slider component
    		0.95,	# int | float (numeric value between 0.0 and 1.0) in 'Top-p (nucleus sampling)' Slider component
    		40,	# int | float (numeric value between 5 and 80) in 'Top-k' Slider component
    		256,	# int | float (numeric value between 0 and 1024) in 'Maximum new tokens' Slider component
    		52,	# int | float  in 'Seed' Number component
    		fn_index=1
    )
    return llm_result

def min_dim_to_size(img, size = 512):
    h, w = img.size
    ratio = size / max(h, w)
    h, w = map(lambda x: int(x * ratio), [h, w])
    return ( ratio ,img.resize((h, w)) )

def lexica(prompt, limit_size = 128, ratio_size = 256 + 128):
    if not prompt or not prompt.strip():
        return []
    prompt = prompt.strip()
    lex = Lexica(query=prompt).images()
    lex = lex[:limit_size]
    lex = list(map(lambda x: x.replace("full_jpg", "sm2"), lex))
    lex_ = []
    for ele in lex:
        try:
            im = Image.open(
                            requests.get(ele, stream = True).raw
                            )
            lex_.append(im)
        except:
            print("err")
        sleep(sleep_time)
    assert lex_
    lex = list(map(lambda x: min_dim_to_size(x, ratio_size)[1], lex_))
    return lex

def search(emoji_outputs, emoji2text_or_not, llm_prompt_input, llm_client = llm_client):
    assert emoji2text_or_not in ["Emoji to Text", "Only Emoji"]
    if emoji2text_or_not == "Only Emoji":
        l = lexica(emoji_outputs)
        return (l, "")
    else:
        assert "{}" in llm_prompt_input
        llm_prompt = llm_prompt_input.format(emoji_outputs)
        llm_output = run_llm_client(llm_client, llm_prompt)
        tail_list = ["someone do something"]
        for tail in tail_list:
            if tail in llm_output and len(llm_output.split(tail)[-1]) > (5 * 3):
                llm_output = llm_output.split(tail)[-1]
        l = lexica(llm_output)
        return (l, llm_output)

def enterpix(prompt, limit_size = 100, ratio_size = 256 + 128, use_key = "bigThumbnailUrl"):
    resp = requests.post(
    url = "https://www.enterpix.app/enterpix/v1/image/prompt-search",
    data= {
        "length": limit_size,
        "platform": "stable-diffusion,midjourney",
        "prompt": prompt,
        "start": 0
        }
    )
    resp = resp.json()
    resp = list(map(lambda x: x[use_key], resp["images"]))
    lex_ = []
    for ele in resp:
        try:
            im = Image.open(
                            requests.get(ele, stream = True).raw
                            )
            lex_.append(im)
        except:
            print("err")
        sleep(sleep_time)
    assert lex_
    resp = list(map(lambda x: min_dim_to_size(x, ratio_size)[1], lex_))
    return resp

def zip_ims(g):
    from uuid import uuid1
    if g is None:
        return None
    l = list(map(lambda x: x["name"], g))
    if not l:
        return None
    zip_file_name ="tmp.zip"
    with ZipFile(zip_file_name ,"w") as zipObj:
        for ele in l:
            zipObj.write(ele, "{}.png".format(uuid1()))
        #zipObj.write(file2.name, "file2")
    return zip_file_name

emoji_order_list = [
    ["πŸ‡", ["πŸ₯’","🍼", "🍱", "πŸ‡", "πŸ¦€"]],
    ["πŸ˜€", ["πŸ₯°", "πŸ˜•", "😺", "πŸ’‹", "πŸ’©"]],
    ["🐡", ["🐡", "πŸ¦ƒ", "🐌", "🐳"]],
    ["πŸ“”", ["πŸ‘“" ,"πŸ“”", "πŸšͺ", "πŸ”‹", "πŸŽ₯"]],
    ["πŸŽƒ", ["⚽", "πŸŽƒ", "🎯", "🎭", "πŸŽ–οΈ"]],
    #["🌍", ["🌍", "🏠"️, "β›²", "πŸ”"️]],
    ["πŸ‘‹", ["πŸ‘", "πŸ’ͺ", "πŸ‘‹", "πŸ‘Œ",]],
    ["🌍", ["🌍", "β›²", "🏠",]],
]

sub_cate_num = 5
sub_cate_size = 36
sub_col_num = 6

def list_to_square(l, col_num = 10):
    assert type(l) == type([])
    row_num = len(l) // col_num
    res = len(l) % col_num
    if res > 0:
        res_for_add = col_num - res
    else:
        res_for_add = 0
        ll = np.asarray(l).reshape([-1, col_num]).tolist()
        return ll
    l_ = deepcopy(l) + [""] * res_for_add
    return list_to_square(l_, col_num)

def append_emojis(selected_index: gr.SelectData, dataframe_origin, emoji_prompt):
    val = dataframe_origin.iloc[selected_index.index[0], selected_index.index[1]]
    if val.strip():
        emoji_prompt = emoji_prompt + val
    return emoji_prompt

def append_chengyu_emojis(selected_index: gr.SelectData, dataframe_origin, emoji_prompt, append_or_replace):
    val = dataframe_origin.iloc[selected_index.index[0], selected_index.index[1]]
    if type(val) != type("") or not val:
        return emoji_prompt
    assert append_or_replace in ["replace", "append"]
    if append_or_replace == "append":
        emoji_prompt = emoji_prompt + val.split(":")[-1]
    else:
        emoji_prompt = val.split(":")[-1]
    return emoji_prompt

def extract_emojis(s):
    #return ''.join(c for c in s if c in emoji.UNICODE_EMOJI['en'])
    dl = emoji.emoji_list(s + "s")
    return "".join(map(lambda x: x["emoji"], dl))

def gen_emojis_by_chengyu(words):
    assert type(words) == type("")
    out = DefaultChengyuManager.get_by_word(words)
    if out is None:
        return ""
    out = "".join(make_one_puzzle(out).puzzle)
    out = extract_emojis(out)
    return out

def gen_emojis_by_sample(search_count=5000):
    pg = gen_puzzle(manager=DefaultChengyuManager, search_count=search_count)
    df = pd.DataFrame(list(map(lambda x: {
        "words": "".join(x.chengyu_item.word_list),
        "emoji": x.puzzle_str,
        "score": sum(x.mask)
    } ,pg)))
    df = df[df["score"] == 4]
    df = df[df["words"].map(lambda x: len(x) == 4)]
    req = []
    col0 = set([])
    col1 = set([])
    col2 = set([])
    col3 = set([])
    for i, r in df.iterrows():
        words = r["words"]
        emoji = r["emoji"]
        if emoji[0] in col0:
            continue
        col0.add(emoji[0])
        if emoji[1] in col1:
            continue
        col1.add(emoji[1])
        if emoji[2] in col2:
            continue
        col2.add(emoji[2])
        if emoji[3] in col3:
            continue
        col3.add(emoji[3])
        req.append(
            r.to_dict()
        )
    df = pd.DataFrame(req)
    if len(df) < 21:
        return gen_emojis_by_sample(search_count=search_count)
    df = pd.DataFrame(
    np.asarray(df.apply(lambda x: x.to_dict(), axis = 1).head(21).map(lambda x:
                    "{}:{}".format(x["words"],x["emoji"])
    ).tolist()).reshape(
        (7, 3)
    )
    )
    return df

def append_pure_to_input(emoji_outputs ,only_emoji_outputs):
    return emoji_outputs + only_emoji_outputs

css = """
#frame span{
 font-size: 1.5em; display: flex; align-items: center;
}
"""

###with gr.Blocks(css="custom.css") as demo:
with gr.Blocks(css = css) as demo:
    title = gr.HTML(
            """<h1 align="center"> <font size="+10"> πŸ•Œ Emojis to StableDiffusion World 🌍 </font> </h1>""",
            elem_id="title",
    )

    frame_list = []
    with gr.Row():
        with gr.Column(label = "Emoji samples, You can click to use them"):
            sub_title_0 = gr.Markdown(
                    value="### Emoji samples, You can click to use them",
                    visible=True,
                    #elem_id="selected_model",
                )
            #for group, df in emoji_df.groupby("group"):
            for group_order_ele, sub_group_order_list in emoji_order_list:
                #group_first = df["emoji"].iloc[0]
                group_first = group_order_ele
                df_group = emoji_df[emoji_df["emoji"] == group_first]["group"].iloc[0]
                df = emoji_df[emoji_df["group"] == df_group]
                with gr.Tab("{} {}".format(group_first, df_group)):
                    #for ii ,(sub_group, dff) in enumerate(df.groupby("sub_group")):
                    for ii in range(len(sub_group_order_list)):
                        sub_first = sub_group_order_list[ii]
                        df_sub_group = emoji_df[emoji_df["emoji"] == sub_first]["sub_group"].iloc[0]
                        dff = df[df["sub_group"] == df_sub_group]
                        if ii >= sub_cate_num:
                            break
                        sub_first = dff["emoji"].iloc[0]
                        sub_l = dff["emoji"].values.tolist()[:sub_cate_size]
                        sub_l_square = list_to_square(sub_l, sub_col_num)
                        g_frame = gr.DataFrame(sub_l_square,
                            interactive=False, headers = [''] * sub_col_num,
                            #datatype="markdown"
                            elem_id="frame",
                            label = "{} {}".format(sub_first, df_sub_group)
                        )
                        #g_frame = gr.Matrix(sub_l_square, label = sub_first,)
                        frame_list.append(g_frame)
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    sub_title_1 = gr.Markdown(
                                  value="### ChengYu to Emoji combinations, You can click to use them, Don't forget edit them after click, to make it meaningful",
                                  visible=True,
                                  #elem_id="selected_model",
                                )
                    chengyu_frame = gr.DataFrame(gen_emojis_by_sample(),
                            interactive=False, headers = [''] * sub_col_num,
                            #datatype="markdown"
                            elem_id="chengyu_frame",
                            #label = "ChengYu to Emoji combinations, You can click to use them"
                        )
                    with gr.Row():
                        chengyu_reset_button = gr.Button("Reset ChengYu Emojis",
                        elem_id="run_button")
                    with gr.Row():
                        append_or_replace = gr.Radio(choices=["replace", "append"],
                            value="replace", label="ChengYu Emoji Append or Replace to below", elem_id="text_radio")
            with gr.Row():
                emoji_outputs = gr.Textbox(label="Emoji Prompt Output", show_label=True, lines=1, max_lines=20,
                min_width = 256, placeholder="Click Emoji from left with some emoji input manually", elem_id="prompt",
                interactive=True)
                clean_button = gr.Button("Clean Emojis", elem_id="clean_button")
                '''
                with gr.Column():
                    clean_button = gr.Button("Clean Emojis", elem_id="clean_button")
                    emoji_outputs_button = gr.Button("Retrieve Images", elem_id="run_button")
                '''
            with gr.Row():
                emoji2text_or_not = gr.Radio(choices=["Only Emoji", "Emoji to Text"],
                    value="Only Emoji", label="Only use Emoji to get images or translate them to Text by LLM",
                    elem_id="trans_radio")
            with gr.Row():
                llm_prompt_input = gr.Textbox(label="Emoji to Text Prompt template used by LLM", show_label=True,
                lines=1, max_lines=20,
                min_width = 256,
                value="Use following emojis to generate a short description of a scene , use the pattern someone do something , the emojis are {}"
                , elem_id="prompt",
                interactive=True)
                llm_outputs = gr.Textbox(label="Emoji to Text Prompt translate by LLM Output", show_label=True,
                lines=1, max_lines=20,
                min_width = 256, placeholder="Emoji describe by Text", elem_id="prompt",
                interactive=True)
            '''
            with gr.Row():
                emoji_gen_chengyu_input = gr.Textbox(label="ChengYu Prompt Input", show_label=False, lines=1, max_lines=20,
                min_width = 256, placeholder="input ChengYu manually, like: εŠ±η²Ύε›Ύζ²»", elem_id="prompt",
                interactive=True)

            with gr.Row():
                only_emoji_outputs = gr.Textbox(label="Only Emoji Prompt Output", show_label=False, lines=1, max_lines=20,
                min_width = 256, placeholder="Filter out only emoji charactors", elem_id="prompt", interactive=True)
                #gr.Slider(label='Number of images ', minimum = 4, maximum = 20, step = 1, value = 4)]
                append_button = gr.Button("Append Only Emojis to Emoji Prompt Output", elem_id="append_button")
                only_emoji_outputs_button = gr.Button("Retrieve Images Only Emoji", elem_id="run_button")

            with gr.Row():
                #text_button = gr.Button("Retrieve Images", elem_id="run_button")
                emoji_outputs_button = gr.Button("Retrieve Images", elem_id="run_button")
            '''
            with gr.Row():
                emoji_outputs_button = gr.Button("Retrieve Images", elem_id="run_button")

            with gr.Row():
                with gr.Column():
                    outputs = gr.Gallery(lable='Output gallery', elem_id="gallery",).style(grid=5,height=768 - 64 - 32,
                            allow_preview=False, label = "retrieve Images")
                    exp_title = gr.HTML(
                            """<br/><br/><h5 align="center"> <font size="+1"> Emojis examples live in πŸ•Œ travel to StableDiffusion 🌍 </font> </h5>""",
                            #elem_id="title",
                    )
                    gr.Examples(
                        [
                            ["πŸ”", "Only Emoji"],
                            ["πŸ”₯🌲", "Only Emoji"],
                            ["πŸ±πŸ½οΈπŸ‘¨", "Emoji to Text"],
                            ["πŸ»πŸ¦β„οΈπŸŒŠ", "Only Emoji"],
                            ["πŸŒŽπŸ¦ΆπŸ‘‚πŸ’€", "Emoji to Text"],
                            ["πŸ‘©β€πŸ”¬πŸ—£β˜•πŸ‘¨β€πŸŽ¨", "Emoji to Text"],
                            ["πŸ‘œπŸ‘šπŸ§£πŸ‘ΈπŸ°βœŒοΈ", "Emoji to Text"],
                            ["πŸ‘πŸπŸŽƒπŸ‘ΆπŸ₯›πŸŒΎπŸ•΅πŸƒβ€β™€οΈ", "Emoji to Text"],
                            ["πŸ™ƒπŸ’πŸ‘‹πŸ‘¨β€πŸ”§πŸ‘„πŸ₯€πŸŒŽπŸŒ™", "Emoji to Text"],
                        ],
                    inputs = [emoji_outputs, emoji2text_or_not],
                    #label = "πŸ•Œ Examples"
                    )

            with gr.Row():
                with gr.Tab(label = "Download"):
                    zip_button = gr.Button("Zip Images to Download", elem_id="zip_button")
                    downloads = gr.File(label = "Image zipped", elem_id = "zip_file")


    for g in frame_list:
        g.select(fn = append_emojis, inputs = [g, emoji_outputs], outputs = emoji_outputs)

    chengyu_frame.select(fn = append_chengyu_emojis, inputs = [chengyu_frame, emoji_outputs, append_or_replace],
        outputs = emoji_outputs)
    chengyu_reset_button.click(fn = lambda _: gen_emojis_by_sample(), outputs = chengyu_frame)

    clean_button.click(fn = lambda _: "", outputs = emoji_outputs)
    #emoji_outputs.change(fn = extract_emojis, inputs = emoji_outputs, outputs = only_emoji_outputs)
    '''
    emoji_gen_chengyu_input.change(fn = gen_emojis_by_chengyu, inputs = emoji_gen_chengyu_input,
        outputs = only_emoji_outputs)
    append_button.click(fn =  append_pure_to_input, inputs = [emoji_outputs ,only_emoji_outputs],
    outputs = emoji_outputs)
    '''

    #emoji_outputs_button.click(lexica, inputs=emoji_outputs, outputs=outputs)
    emoji_outputs_button.click(search,
        inputs=[emoji_outputs, emoji2text_or_not, llm_prompt_input],
        outputs=[outputs, llm_outputs])

    zip_button.click(
        zip_ims, inputs = outputs, outputs=downloads
    )

demo.launch("0.0.0.0")