Spaces:
Runtime error
Runtime error
| #### pip install advertools | |
| #### pip install emoji | |
| #### pip install emoji-chengyu | |
| #### pip install gradio-client | |
| #### prefer to run in chorme, others may have problem in change hock function | |
| import gradio as gr | |
| import pandas as pd | |
| import emoji | |
| from advertools.emoji import emoji_df | |
| from copy import deepcopy | |
| import numpy as np | |
| from emoji_chengyu.data import DefaultChengyuManager | |
| from emoji_chengyu.puzzle import make_one_puzzle, gen_puzzle | |
| from Lex import * | |
| ''' | |
| lex = Lexica(query="man woman fire snow").images() | |
| ''' | |
| from PIL import Image | |
| import requests | |
| from zipfile import ZipFile | |
| from time import sleep | |
| sleep_time = 0.5 | |
| import requests | |
| def translate_zh_to_en(zh_text): | |
| assert type(zh_text) == type("") | |
| ''' | |
| response = requests.post("https://svjack-translate-chinese-to-english.hf.space/run/predict", json={ | |
| "data": [ | |
| zh_text, | |
| ]}).json() | |
| ''' | |
| response = requests.post("https://svjack-ctranslate.hf.space/run/predict", json={ | |
| "data": [ | |
| zh_text, | |
| "zh", | |
| "en", | |
| ]}).json() | |
| data = response["data"] | |
| data = data[0] | |
| #data = data["English Question"] | |
| data = data["Target Question"] | |
| return data | |
| def translate_en_to_zh(en_text): | |
| assert type(en_text) == type("") | |
| ''' | |
| response = requests.post("https://svjack-translate.hf.space/run/predict", json={ | |
| "data": [ | |
| en_text, | |
| "en", | |
| "zh", | |
| ]}).json() | |
| ''' | |
| response = requests.post("https://svjack-ctranslate.hf.space/run/predict", json={ | |
| "data": [ | |
| en_text, | |
| "en", | |
| "zh", | |
| ]}).json() | |
| data = response["data"] | |
| data = data[0] | |
| data = data["Target Question"] | |
| return data | |
| from gradio_client import Client | |
| llm_client = Client("https://svjack-wizardlm-13b-ggml.hf.space/--replicas/bnqpc/") | |
| ''' | |
| llm_result = llm_client.predict( | |
| "Use following emojis to generate a short description of a scene , the emojis are ๐จ๐ฉ๐ฅโ๏ธ", # str in 'Question/Instruction' Textbox component | |
| 0.8, # int | float (numeric value between 0.1 and 1.0) in 'Temperature' Slider component | |
| 0.95, # int | float (numeric value between 0.0 and 1.0) in 'Top-p (nucleus sampling)' Slider component | |
| 40, # int | float (numeric value between 5 and 80) in 'Top-k' Slider component | |
| 256, # int | float (numeric value between 0 and 1024) in 'Maximum new tokens' Slider component | |
| 52, # int | float in 'Seed' Number component | |
| fn_index=1 | |
| ) | |
| ''' | |
| def run_llm_client(llm_client, prompt): | |
| llm_result = llm_client.predict( | |
| prompt, # str in 'Question/Instruction' Textbox component | |
| 0.8, # int | float (numeric value between 0.1 and 1.0) in 'Temperature' Slider component | |
| 0.95, # int | float (numeric value between 0.0 and 1.0) in 'Top-p (nucleus sampling)' Slider component | |
| 40, # int | float (numeric value between 5 and 80) in 'Top-k' Slider component | |
| 256, # int | float (numeric value between 0 and 1024) in 'Maximum new tokens' Slider component | |
| 52, # int | float in 'Seed' Number component | |
| fn_index=1 | |
| ) | |
| return llm_result | |
| def chengyu_emoji_to_im_prompt(chengyu_emoji_input, | |
| llm_prompt_input, llm_client = llm_client): | |
| chengyu, emoji = chengyu_emoji_input.split(":") | |
| chengyu_en = translate_zh_to_en(chengyu) | |
| print("{}\t\t\t{}".format(chengyu_emoji_input ,chengyu_en)) | |
| llm_prompt = llm_prompt_input.format(chengyu_en, emoji) | |
| im_en_prompt = run_llm_client(llm_client, llm_prompt) | |
| im_zh_prompt = translate_en_to_zh(im_en_prompt) | |
| return im_en_prompt, im_zh_prompt | |
| def min_dim_to_size(img, size = 512): | |
| h, w = img.size | |
| ratio = size / max(h, w) | |
| h, w = map(lambda x: int(x * ratio), [h, w]) | |
| return ( ratio ,img.resize((h, w)) ) | |
| def lexica(prompt, limit_size = 128, ratio_size = 256 + 128): | |
| if not prompt or not prompt.strip(): | |
| return [] | |
| prompt = prompt.strip() | |
| lex = Lexica(query=prompt).images() | |
| lex = lex[:limit_size] | |
| lex = list(map(lambda x: x.replace("full_jpg", "sm2"), lex)) | |
| lex_ = [] | |
| for ele in lex: | |
| try: | |
| im = Image.open( | |
| requests.get(ele, stream = True).raw | |
| ) | |
| lex_.append(im) | |
| except: | |
| print("err") | |
| sleep(sleep_time) | |
| assert lex_ | |
| lex = list(map(lambda x: min_dim_to_size(x, ratio_size)[1], lex_)) | |
| return lex | |
| def search(emoji_outputs, emoji2text_or_not, llm_prompt_input, llm_client = llm_client): | |
| assert emoji2text_or_not in ["Emoji to Text", "Only Emoji", "ChengYu with Emoji"] | |
| if emoji2text_or_not == "Only Emoji": | |
| emoji_outputs = extract_2(emoji_outputs)[1] | |
| l = lexica(emoji_outputs.replace(":", "")) | |
| return (l, "", "") | |
| elif emoji2text_or_not == "Emoji to Text": | |
| assert "{}" in llm_prompt_input | |
| emoji_outputs = extract_2(emoji_outputs)[1] | |
| llm_prompt = llm_prompt_input.format(emoji_outputs) | |
| llm_en_output = run_llm_client(llm_client, llm_prompt) | |
| llm_zh_output = translate_en_to_zh(llm_en_output) | |
| tail_list = ["someone do something"] | |
| for tail in tail_list: | |
| if tail in llm_en_output and len(llm_en_output.split(tail)[-1]) > (5 * 3): | |
| llm_en_output = llm_en_output.split(tail)[-1] | |
| l = lexica(llm_en_output) | |
| return (l, llm_en_output, llm_zh_output) | |
| else: | |
| assert "{}" in llm_prompt_input | |
| a, b = extract_2(emoji_outputs) | |
| a, b = a.strip(), b.strip() | |
| if not a and not b: | |
| return ([], "", "") | |
| emoji_outputs = "{}:{}".format(a, b) | |
| llm_en_output, llm_zh_output = chengyu_emoji_to_im_prompt(emoji_outputs, llm_prompt_input) | |
| l = lexica(llm_en_output) | |
| return (l, llm_en_output, llm_zh_output) | |
| def enterpix(prompt, limit_size = 100, ratio_size = 256 + 128, use_key = "bigThumbnailUrl"): | |
| resp = requests.post( | |
| url = "https://www.enterpix.app/enterpix/v1/image/prompt-search", | |
| data= { | |
| "length": limit_size, | |
| "platform": "stable-diffusion,midjourney", | |
| "prompt": prompt, | |
| "start": 0 | |
| } | |
| ) | |
| resp = resp.json() | |
| resp = list(map(lambda x: x[use_key], resp["images"])) | |
| lex_ = [] | |
| for ele in resp: | |
| try: | |
| im = Image.open( | |
| requests.get(ele, stream = True).raw | |
| ) | |
| lex_.append(im) | |
| except: | |
| print("err") | |
| sleep(sleep_time) | |
| assert lex_ | |
| resp = list(map(lambda x: min_dim_to_size(x, ratio_size)[1], lex_)) | |
| return resp | |
| def zip_ims(g): | |
| from uuid import uuid1 | |
| if g is None: | |
| return None | |
| l = list(map(lambda x: x["name"], g)) | |
| if not l: | |
| return None | |
| zip_file_name ="tmp.zip" | |
| with ZipFile(zip_file_name ,"w") as zipObj: | |
| for ele in l: | |
| zipObj.write(ele, "{}.png".format(uuid1())) | |
| #zipObj.write(file2.name, "file2") | |
| return zip_file_name | |
| emoji_order_list = [ | |
| ["๐", ["๐ฅข","๐ผ", "๐ฑ", "๐", "๐ฆ"]], | |
| ["๐", ["๐ฅฐ", "๐", "๐บ", "๐", "๐ฉ"]], | |
| ["๐ต", ["๐ต", "๐ฆ", "๐", "๐ณ"]], | |
| ["๐", ["๐" ,"๐", "๐ช", "๐", "๐ฅ"]], | |
| ["๐", ["โฝ", "๐", "๐ฏ", "๐ญ", "๐๏ธ"]], | |
| #["๐", ["๐", "๐ "๏ธ, "โฒ", "๐"๏ธ]], | |
| ["๐", ["๐", "๐ช", "๐", "๐",]], | |
| ["๐", ["๐", "โฒ", "๐ ",]], | |
| ] | |
| sub_cate_num = 5 | |
| sub_cate_size = 36 | |
| sub_col_num = 6 | |
| def list_to_square(l, col_num = 10): | |
| assert type(l) == type([]) | |
| row_num = len(l) // col_num | |
| res = len(l) % col_num | |
| if res > 0: | |
| res_for_add = col_num - res | |
| else: | |
| res_for_add = 0 | |
| ll = np.asarray(l).reshape([-1, col_num]).tolist() | |
| return ll | |
| l_ = deepcopy(l) + [""] * res_for_add | |
| return list_to_square(l_, col_num) | |
| def append_emojis(selected_index: gr.SelectData, dataframe_origin, emoji_prompt): | |
| val = dataframe_origin.iloc[selected_index.index[0], selected_index.index[1]] | |
| if val.strip(): | |
| #emoji_prompt = emoji_prompt + val | |
| a, b = extract_2(emoji_prompt) | |
| aa, bb = extract_2(val) | |
| a, b = a.strip(), b.strip() | |
| aa, bb = aa.strip(), bb.strip() | |
| emoji_prompt = "{}:{}".format(a + aa, b + bb) | |
| return emoji_prompt | |
| def append_chengyu_emojis(selected_index: gr.SelectData, dataframe_origin, emoji_prompt, append_or_replace, emoji2text_or_not): | |
| val = dataframe_origin.iloc[selected_index.index[0], selected_index.index[1]] | |
| if type(val) != type("") or not val: | |
| return emoji_prompt | |
| assert emoji2text_or_not in ["Emoji to Text", "Only Emoji", "ChengYu with Emoji"] | |
| assert append_or_replace in ["replace", "append"] | |
| a, b = extract_2(emoji_prompt) | |
| aa, bb = extract_2(val) | |
| if append_or_replace == "append": | |
| ''' | |
| if emoji2text_or_not in ["Emoji to Text", "Only Emoji"]: | |
| emoji_prompt = emoji_prompt + val.split(":")[-1] | |
| else: | |
| a, b = val.split(":") | |
| emoji_prompt = "{}:{}".format(a, emoji_prompt + b) | |
| ''' | |
| a, b = a + aa, b + bb | |
| else: | |
| ''' | |
| if emoji2text_or_not in ["Emoji to Text", "Only Emoji"]: | |
| emoji_prompt = val.split(":")[-1] | |
| else: | |
| emoji_prompt = val | |
| ''' | |
| a, b = aa, bb | |
| a = a.strip() | |
| b = b.strip() | |
| emoji_prompt = "{}:{}".format(a, b) | |
| return emoji_prompt | |
| def extract_emojis(s): | |
| #return ''.join(c for c in s if c in emoji.UNICODE_EMOJI['en']) | |
| dl = emoji.emoji_list(s) | |
| return "".join(map(lambda x: x["emoji"], dl)) | |
| def extract_2(s): | |
| b = extract_emojis(s) | |
| a = "".join(filter(lambda x: x not in b + ":", list(s))) | |
| return a, b | |
| def gen_emojis_by_chengyu(words): | |
| assert type(words) == type("") | |
| out = DefaultChengyuManager.get_by_word(words) | |
| if out is None: | |
| return "" | |
| out = "".join(make_one_puzzle(out).puzzle) | |
| out = extract_emojis(out) | |
| return out | |
| def gen_emojis_by_sample(search_count=5000): | |
| pg = gen_puzzle(manager=DefaultChengyuManager, search_count=search_count) | |
| df = pd.DataFrame(list(map(lambda x: { | |
| "words": "".join(x.chengyu_item.word_list), | |
| "emoji": x.puzzle_str, | |
| "score": sum(x.mask) | |
| } ,pg))) | |
| df = df[df["score"] == 4] | |
| df = df[df["words"].map(lambda x: len(x) == 4)] | |
| req = [] | |
| col0 = set([]) | |
| col1 = set([]) | |
| col2 = set([]) | |
| col3 = set([]) | |
| for i, r in df.iterrows(): | |
| words = r["words"] | |
| emoji = r["emoji"] | |
| if emoji[0] in col0: | |
| continue | |
| col0.add(emoji[0]) | |
| if emoji[1] in col1: | |
| continue | |
| col1.add(emoji[1]) | |
| if emoji[2] in col2: | |
| continue | |
| col2.add(emoji[2]) | |
| if emoji[3] in col3: | |
| continue | |
| col3.add(emoji[3]) | |
| req.append( | |
| r.to_dict() | |
| ) | |
| df = pd.DataFrame(req) | |
| if len(df) < 21: | |
| return gen_emojis_by_sample(search_count=search_count) | |
| df = pd.DataFrame( | |
| np.asarray(df.apply(lambda x: x.to_dict(), axis = 1).head(21).map(lambda x: | |
| "{}:{}".format(x["words"],x["emoji"]) | |
| ).tolist()).reshape( | |
| (7, 3) | |
| ) | |
| ) | |
| return df | |
| def append_pure_to_input(emoji_outputs ,only_emoji_outputs): | |
| return emoji_outputs + only_emoji_outputs | |
| def outputs_rec_format(emoji_outputs): | |
| a, b = extract_2(emoji_outputs) | |
| a, b = a.strip(), b.strip() | |
| emoji_outputs = "{}:{}".format(a, b) | |
| return emoji_outputs | |
| css = """ | |
| #frame span{ | |
| font-size: 1.5em; display: flex; align-items: center; | |
| } | |
| """ | |
| ###with gr.Blocks(css="custom.css") as demo: | |
| with gr.Blocks(css = css) as demo: | |
| title = gr.HTML( | |
| """<h1 align="center"> <font size="+10"> ๐ Emojis to StableDiffusion World ๐ </font> </h1>""", | |
| elem_id="title", | |
| ) | |
| frame_list = [] | |
| with gr.Row(): | |
| with gr.Column(label = "Emoji samples, You can click to use them"): | |
| sub_title_0 = gr.Markdown( | |
| value="### Emoji samples, You can click to use them", | |
| visible=True, | |
| #elem_id="selected_model", | |
| ) | |
| #for group, df in emoji_df.groupby("group"): | |
| for group_order_ele, sub_group_order_list in emoji_order_list: | |
| #group_first = df["emoji"].iloc[0] | |
| group_first = group_order_ele | |
| df_group = emoji_df[emoji_df["emoji"] == group_first]["group"].iloc[0] | |
| df = emoji_df[emoji_df["group"] == df_group] | |
| with gr.Tab("{} {}".format(group_first, df_group)): | |
| #for ii ,(sub_group, dff) in enumerate(df.groupby("sub_group")): | |
| for ii in range(len(sub_group_order_list)): | |
| sub_first = sub_group_order_list[ii] | |
| df_sub_group = emoji_df[emoji_df["emoji"] == sub_first]["sub_group"].iloc[0] | |
| dff = df[df["sub_group"] == df_sub_group] | |
| if ii >= sub_cate_num: | |
| break | |
| sub_first = dff["emoji"].iloc[0] | |
| sub_l = dff["emoji"].values.tolist()[:sub_cate_size] | |
| sub_l_square = list_to_square(sub_l, sub_col_num) | |
| g_frame = gr.DataFrame(sub_l_square, | |
| interactive=False, headers = [''] * sub_col_num, | |
| #datatype="markdown" | |
| elem_id="frame", | |
| label = "{} {}".format(sub_first, df_sub_group) | |
| ) | |
| #g_frame = gr.Matrix(sub_l_square, label = sub_first,) | |
| frame_list.append(g_frame) | |
| with gr.Column(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| sub_title_1 = gr.Markdown( | |
| value="### ChengYu to Emoji combinations, You can click to use them, Don't forget edit them after click, to make it meaningful", | |
| visible=True, | |
| #elem_id="selected_model", | |
| ) | |
| chengyu_frame = gr.DataFrame(gen_emojis_by_sample(), | |
| interactive=False, headers = [''] * sub_col_num, | |
| #datatype="markdown" | |
| elem_id="chengyu_frame", | |
| #label = "ChengYu to Emoji combinations, You can click to use them" | |
| ) | |
| with gr.Row(): | |
| chengyu_reset_button = gr.Button("Reset ChengYu Emojis", | |
| elem_id="run_button") | |
| with gr.Row(): | |
| append_or_replace = gr.Radio(choices=["replace", "append"], | |
| value="replace", label="ChengYu Emoji Append or Replace to below", elem_id="text_radio") | |
| with gr.Row(): | |
| emoji_outputs = gr.Textbox(label="Emoji Prompt Input", show_label=True, lines=1, max_lines=20, | |
| min_width = 256, placeholder="Click Emoji from left with some emoji input manually", elem_id="prompt", | |
| interactive=True) | |
| clean_button = gr.Button("Clear", elem_id="clear_button") | |
| ''' | |
| with gr.Column(): | |
| clean_button = gr.Button("Clean Emojis", elem_id="clean_button") | |
| emoji_outputs_button = gr.Button("Retrieve Images", elem_id="run_button") | |
| ''' | |
| with gr.Row(): | |
| ### \n ๐ Only Emoji \n ๐โก๏ธ๐ค Emoji to Text \n ๐โ๏ธ๐ ChengYu with Emoji | |
| with gr.Row(): | |
| emoji2text_or_not = gr.Radio(choices=["Only Emoji", "Emoji to Text", "ChengYu with Emoji"], | |
| value="Only Emoji", label="Emoji &| Text to get images or translate them to Text by LLM", | |
| elem_id="trans_radio", | |
| info = "๐ Only Emoji ----------- ๐โก๏ธ๐ค Emoji to Text ------- ๐โ๏ธ๐ ChengYu with Emoji" | |
| ) | |
| llm_prompt_input = gr.Textbox(label="Emoji to Text Prompt template used by LLM", show_label=True, | |
| lines=1, max_lines=20, | |
| min_width = 256, | |
| value="Use following emojis to generate a short description of a scene , use the pattern someone do something , the emojis are {}" | |
| , elem_id="prompt", | |
| interactive=True) | |
| llm_outputs = gr.Textbox(label="Emoji to Text Prompt translate by LLM Output", show_label=True, | |
| lines=1, max_lines=20, | |
| min_width = 256, placeholder="Emoji describe by Text", elem_id="prompt", | |
| interactive=True) | |
| llm_zh_outputs = gr.Textbox(label="Emoji to Text Prompt translate by LLM Output in Chinese", show_label=True, | |
| lines=1, max_lines=20, | |
| min_width = 256, placeholder="Emoji describe by Chinese", elem_id="prompt", | |
| interactive=True) | |
| ''' | |
| with gr.Row(): | |
| emoji_gen_chengyu_input = gr.Textbox(label="ChengYu Prompt Input", show_label=False, lines=1, max_lines=20, | |
| min_width = 256, placeholder="input ChengYu manually, like: ๅฑ็ฒพๅพๆฒป", elem_id="prompt", | |
| interactive=True) | |
| with gr.Row(): | |
| only_emoji_outputs = gr.Textbox(label="Only Emoji Prompt Output", show_label=False, lines=1, max_lines=20, | |
| min_width = 256, placeholder="Filter out only emoji charactors", elem_id="prompt", interactive=True) | |
| #gr.Slider(label='Number of images ', minimum = 4, maximum = 20, step = 1, value = 4)] | |
| append_button = gr.Button("Append Only Emojis to Emoji Prompt Output", elem_id="append_button") | |
| only_emoji_outputs_button = gr.Button("Retrieve Images Only Emoji", elem_id="run_button") | |
| with gr.Row(): | |
| #text_button = gr.Button("Retrieve Images", elem_id="run_button") | |
| emoji_outputs_button = gr.Button("Retrieve Images", elem_id="run_button") | |
| ''' | |
| with gr.Row(): | |
| emoji_outputs_button = gr.Button("Retrieve Images", elem_id="run_button") | |
| with gr.Row(): | |
| with gr.Column(): | |
| outputs = gr.Gallery(lable='Output gallery', elem_id="gallery",).style(grid=5,height=768 - 64 - 32, | |
| allow_preview=False, label = "retrieve Images") | |
| exp_title = gr.HTML( | |
| """<br/><br/><h5 align="center"> <font size="+1"> Emojis examples live in ๐ travel to StableDiffusion ๐ </font> </h5>""", | |
| #elem_id="title", | |
| ) | |
| gr.Examples( | |
| [ | |
| ["๐", "Only Emoji"], | |
| ["๐ฅ๐ฒ", "Only Emoji"], | |
| ["๐ฑ๐ฝ๏ธ๐จ", "Emoji to Text"], | |
| ["๐ป๐ฆโ๏ธ๐", "Only Emoji"], | |
| ["๐๐ฆถ๐๐ค", "Emoji to Text"], | |
| ["๐ฉโ๐ฌ๐ฃโ๐จโ๐จ", "Emoji to Text"], | |
| ["ๅๅฑฑ็ซๆตท:๐โก๐ฉโ๐๐งโโ๏ธ", "ChengYu with Emoji"], | |
| ["ไผ ไธบไฝณ่ฏ:๐ก๐งฃ๐ฉโ๐ฉโ๐งโ๐ง๐ฉโ๐จ", "ChengYu with Emoji"], | |
| ["ๅคง้่ณ็ฎ:๐จ๐ณ๐พ๐ง ๐โโ๏ธ", "ChengYu with Emoji"], | |
| #["๐๐๐งฃ๐ธ๐ฐโ๏ธ", "Emoji to Text"], | |
| #["๐๐๐๐ถ๐ฅ๐พ๐ต๐โโ๏ธ", "Emoji to Text"], | |
| #["๐๐๐๐จโ๐ง๐๐ฅ๐๐", "Emoji to Text"], | |
| #["ๆฅๆฑๆฝฎๆฐด่ฟๆตทๅนณ:๐๐บ๐ฆ๐คค๐ชท๐โ๏ธ", "ChengYu with Emoji"], | |
| #["ๆๆๆ็จ๏ผไน้นๅ้ฃใ:๐๐โจ๐ซ ๐ฆ๐ฆ๐ฆข๐ชฝ", "ChengYu with Emoji"] | |
| ], | |
| inputs = [emoji_outputs, emoji2text_or_not], | |
| #label = "๐ Examples" | |
| ) | |
| gr.Examples( | |
| [ | |
| #["๐", "Only Emoji"], | |
| #["๐ฅ๐ฒ", "Only Emoji"], | |
| #["๐ฑ๐ฝ๏ธ๐จ", "Emoji to Text"], | |
| #["๐ป๐ฆโ๏ธ๐", "Only Emoji"], | |
| #["๐๐ฆถ๐๐ค", "Emoji to Text"], | |
| #["๐ฉโ๐ฌ๐ฃโ๐จโ๐จ", "Emoji to Text"], | |
| #["ๅๅฑฑ็ซๆตท:๐โก๐ฉโ๐๐งโโ๏ธ", "ChengYu with Emoji"], | |
| #["ไผ ไธบไฝณ่ฏ:๐ก๐งฃ๐ฉโ๐ฉโ๐งโ๐ง๐ฉโ๐จ", "ChengYu with Emoji"], | |
| #["ๅคง้่ณ็ฎ:๐จ๐ณ๐พ๐ง ๐โโ๏ธ", "ChengYu with Emoji"], | |
| ["๐๐๐งฃ๐ธ๐ฐโ๏ธ", "Emoji to Text"], | |
| ["๐๐๐๐ถ๐ฅ๐พ๐ต๐โโ๏ธ", "Emoji to Text"], | |
| ["๐๐๐๐จโ๐ง๐๐ฅ๐๐", "Emoji to Text"], | |
| ["ๆฅๆฑๆฝฎๆฐด่ฟๆตทๅนณ:๐๐บ๐ฆ๐คค๐ชท๐โ๏ธ", "ChengYu with Emoji"], | |
| ["ๆๆๆ็จ๏ผไน้นๅ้ฃใ:๐๐โจ๐ซ ๐ฆ๐ฆ๐ฆข๐ชฝ", "ChengYu with Emoji"] | |
| ], | |
| inputs = [emoji_outputs, emoji2text_or_not], | |
| #label = "๐ Examples" | |
| ) | |
| with gr.Row(): | |
| with gr.Tab(label = "Download"): | |
| zip_button = gr.Button("Zip Images to Download", elem_id="zip_button") | |
| downloads = gr.File(label = "Image zipped", elem_id = "zip_file") | |
| ### ["Only Emoji", "Emoji to Text", "ChengYu with Emoji"] | |
| emoji2text_or_not.change( | |
| fn = lambda x: "" if x == "Only Emoji" else ( | |
| "Use following emojis to generate a short description of a scene , use the pattern someone do something , the emojis are {}" if x == "Emoji to Text" \ | |
| else "Use following emojis to make a short description of the scene about '{}', the emojis are {}" | |
| ) | |
| , inputs = emoji2text_or_not, outputs = llm_prompt_input | |
| ) | |
| for g in frame_list: | |
| g.select(fn = append_emojis, inputs = [g, emoji_outputs], outputs = emoji_outputs) | |
| ## | |
| chengyu_frame.select(fn = append_chengyu_emojis, inputs = [chengyu_frame, emoji_outputs, append_or_replace, emoji2text_or_not], | |
| outputs = emoji_outputs) | |
| chengyu_reset_button.click(fn = lambda _: gen_emojis_by_sample(), outputs = chengyu_frame) | |
| clean_button.click(fn = lambda _: "", outputs = emoji_outputs) | |
| #emoji_outputs.change(fn = extract_emojis, inputs = emoji_outputs, outputs = only_emoji_outputs) | |
| ''' | |
| emoji_outputs.change( | |
| fn = outputs_rec_format | |
| , inputs = emoji_outputs, outputs = emoji_outputs) | |
| ''' | |
| ''' | |
| emoji_gen_chengyu_input.change(fn = gen_emojis_by_chengyu, inputs = emoji_gen_chengyu_input, | |
| outputs = only_emoji_outputs) | |
| append_button.click(fn = append_pure_to_input, inputs = [emoji_outputs ,only_emoji_outputs], | |
| outputs = emoji_outputs) | |
| ''' | |
| #emoji_outputs_button.click(lexica, inputs=emoji_outputs, outputs=outputs) | |
| emoji_outputs_button.click(search, | |
| inputs=[emoji_outputs, emoji2text_or_not, llm_prompt_input], | |
| outputs=[outputs, llm_outputs, llm_zh_outputs]) | |
| zip_button.click( | |
| zip_ims, inputs = outputs, outputs=downloads | |
| ) | |
| demo.launch("0.0.0.0") | |