Spaces:
Runtime error
Runtime error
File size: 9,742 Bytes
aa24a87 1794465 ba1aaa1 cb82f6d 1794465 ba1aaa1 1794465 ba1aaa1 1794465 ba1aaa1 1794465 1d5fef5 1794465 7c49730 1794465 8beb4c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
'''
import os
from datasets import load_dataset
from PIL import Image
def save_images_locally(dataset_name="svjack/InfiniteYou_PosterCraft_Wang_Leehom_Poster_FP8_WAV_text_mask"):
# 加载数据集
dataset = load_dataset(dataset_name)["train"]
# 创建文件夹
image_dir = "original_images"
mask_dir = "mask_images"
os.makedirs(image_dir, exist_ok=True)
os.makedirs(mask_dir, exist_ok=True)
# 遍历数据集并保存图像
for idx, example in enumerate(dataset):
# 保存原图
image_path = os.path.join(image_dir, f"{idx:04d}.png")
example["Wang_Leehom_poster_image"].save(image_path)
# 保存 mask 图像
mask_path = os.path.join(mask_dir, f"{idx:04d}.png")
example["mask_image"].convert("RGB").save(mask_path)
print(f"✅ 原图已保存至 {image_dir}")
print(f"✅ Mask 图像已保存至 {mask_dir}")
if __name__ == "__main__":
save_images_locally()
import cv2
import numpy as np
from PIL import Image
def blur_mask_opencv(
mask: Image.Image,
blur_factor: int,
edge_expand: int = 0 # 新增参数:边缘扩展像素值
) -> Image.Image:
"""
增强版遮罩处理:支持边缘扩展 + 高斯模糊羽化
参数:
mask: PIL格式的遮罩图像(支持 RGBA/RGB/L 模式)
blur_factor: 模糊强度(奇数)
edge_expand: 边缘扩展像素值(非负整数)
"""
# 转换为OpenCV格式(NumPy数组)
mask_np = np.array(mask)
original_mode = mask.mode # 保存原始色彩模式
# 通道分离逻辑
if original_mode == 'RGBA':
alpha = mask_np[:, :, 3]
processed = alpha
elif original_mode == 'RGB':
processed = cv2.cvtColor(mask_np, cv2.COLOR_RGB2GRAY)
else: # L模式(灰度)
processed = mask_np
# 边缘扩展(核心新增功能)
if edge_expand > 0:
kernel = np.ones((3, 3), np.uint8) # 3x3方形结构核
processed = cv2.dilate(
processed,
kernel,
iterations=edge_expand # 扩展次数 = 扩展像素值
)
# 高斯模糊羽化
kernel_size = blur_factor | 1 # 确保为奇数
blurred = cv2.GaussianBlur(processed, (kernel_size, kernel_size), 0)
# 重建为PIL图像
if original_mode == 'RGBA':
result = mask_np.copy()
result[:, :, 3] = blurred # 仅替换Alpha通道
return Image.fromarray(result)
else:
return Image.fromarray(blurred)
#from PIL import Image
#mask = Image.open("image (51).jpg")
# 使用示例
#blurred_mask = blur_mask_opencv(mask, 33, 20)
#blurred_mask.save("b_mask.png")
#blurred_mask
import os
import numpy as np
from PIL import Image
import torch
from diffusers import FluxFillPipeline
# 初始化模型
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
def calculate_optimal_dimensions(image):
original_width, original_height = image.size
MIN_ASPECT_RATIO = 9 / 16
MAX_ASPECT_RATIO = 16 / 9
FIXED_DIMENSION = 1024
original_aspect_ratio = original_width / original_height
if original_aspect_ratio > 1:
width = FIXED_DIMENSION
height = round(FIXED_DIMENSION / original_aspect_ratio)
else:
height = FIXED_DIMENSION
width = round(FIXED_DIMENSION * original_aspect_ratio)
width = (width // 8) * 8
height = (height // 8) * 8
calculated_aspect_ratio = width / height
if calculated_aspect_ratio > MAX_ASPECT_RATIO:
width = (height * MAX_ASPECT_RATIO // 8) * 8
elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
height = (width / MIN_ASPECT_RATIO // 8) * 8
width = max(width, 576) if width == FIXED_DIMENSION else width
height = max(height, 576) if height == FIXED_DIMENSION else height
return width, height
def calculate_white_pixel_ratio(mask_image):
mask_array = np.array(mask_image.convert('L'))
white_pixels = np.sum(mask_array == 255)
total_pixels = mask_array.size
return white_pixels / total_pixels
def inpaint(image_path, mask_path, output_path):
image = Image.open(image_path).convert("RGB")
mask = Image.open(mask_path).convert("L")
#mask = blur_mask_opencv(mask, 33, 20)
mask = blur_mask_opencv(mask, 33, 60)
white_ratio = calculate_white_pixel_ratio(mask)
if white_ratio >= 1 / 3:
image.save(output_path)
return
width, height = calculate_optimal_dimensions(image)
result = pipe(
prompt="",
height=height,
width=width,
image=image,
mask_image=mask,
num_inference_steps=40,
guidance_scale=28,
).images[0]
result.save(output_path)
def process_all_image_pairs():
image_dir = "original_images"
mask_dir = "mask_images"
output_dir = "inpaint_results"
os.makedirs(output_dir, exist_ok=True)
for filename in os.listdir(image_dir):
base_name = os.path.splitext(filename)[0]
image_path = os.path.join(image_dir, filename)
mask_path = os.path.join(mask_dir, filename)
output_path = os.path.join(output_dir, filename)
if not os.path.exists(mask_path):
continue
try:
inpaint(image_path, mask_path, output_path)
except Exception as e:
print(f"❌ 处理 {filename} 时出错: {e}")
print(f"✅ 修复结果已保存至 {output_dir}")
if __name__ == "__main__":
process_all_image_pairs()
import os
from datasets import load_dataset, DatasetDict, Image as HfImage
from PIL import Image
def update_dataset_with_inpaint_results():
dataset_name = "svjack/InfiniteYou_PosterCraft_Wang_Leehom_Poster_FP8_WAV_text_mask"
input_dataset = load_dataset(dataset_name)["train"]
output_dir = "inpaint_results"
output_dataset_path = "InfiniteYou_PosterCraft_Wang_Leehom_Poster_FP8_WAV_text_mask_inpaint"
os.makedirs(output_dataset_path, exist_ok=True)
def add_inpaint_image(example, idx):
output_path = os.path.join(output_dir, f"{idx:04d}.png")
if os.path.exists(output_path):
example["inpaint_image"] = output_path
else:
# 如果没有生成修复图像,则使用原始图像
example["inpaint_image"] = example["Wang_Leehom_poster_image"]
return example
updated_dataset = input_dataset.map(
lambda ex, idx: add_inpaint_image(ex, idx),
with_indices=True,
batched=False,
num_proc=1
)
updated_dataset = updated_dataset.cast_column("inpaint_image", HfImage())
updated_dataset.save_to_disk(output_dataset_path)
print(f"✅ 更新后的数据集已保存至 {output_dataset_path}")
if __name__ == "__main__":
update_dataset_with_inpaint_results()
'''
import torch
import spaces
import gradio as gr
from diffusers import FluxFillPipeline
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")
# reference https://huggingface.co/spaces/black-forest-labs/FLUX.1-Fill-dev/blob/main/app.py
def calculate_optimal_dimensions(image):
# Extract the original dimensions
original_width, original_height = image.size
# Set constants
MIN_ASPECT_RATIO = 9 / 16
MAX_ASPECT_RATIO = 16 / 9
FIXED_DIMENSION = 1024
# Calculate the aspect ratio of the original image
original_aspect_ratio = original_width / original_height
# Determine which dimension to fix
if original_aspect_ratio > 1: # Wider than tall
width = FIXED_DIMENSION
height = round(FIXED_DIMENSION / original_aspect_ratio)
else: # Taller than wide
height = FIXED_DIMENSION
width = round(FIXED_DIMENSION * original_aspect_ratio)
# Ensure dimensions are multiples of 8
width = (width // 8) * 8
height = (height // 8) * 8
# Enforce aspect ratio limits
calculated_aspect_ratio = width / height
if calculated_aspect_ratio > MAX_ASPECT_RATIO:
width = (height * MAX_ASPECT_RATIO // 8) * 8
elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
height = (width / MIN_ASPECT_RATIO // 8) * 8
# Ensure width and height remain above the minimum dimensions
width = max(width, 576) if width == FIXED_DIMENSION else width
height = max(height, 576) if height == FIXED_DIMENSION else height
return width, height
@spaces.GPU(duration=120)
def inpaint(
image,
mask,
prompt="",
num_inference_steps=28,
guidance_scale=50,
):
image = image.convert("RGB")
mask = mask.convert("L")
width, height = calculate_optimal_dimensions(image)
result = pipe(
prompt=prompt,
height= height,
width= width,
image= image,
mask_image=mask,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images[0]
result = result.convert("RGBA")
return result
demo = gr.Interface(
fn=inpaint,
inputs=[
gr.Image(label="image", type="pil"),
gr.Image(label="mask", type="pil"),
gr.Text(label="prompt"),
gr.Number(value=40, label="num_inference_steps"),
gr.Number(value=28, label="guidance_scale"),
],
outputs=["image"],
api_name="inpaint",
examples=[["./assets/rocket.png", "./assets/Inpainting mask.png"]],
cache_examples=False,
description="it is recommended that you use https://github.com/la-voliere/react-mask-editor when creating an image mask in JS and then inverse it before sending it to this space",
)
#demo.launch(debug=True,show_error=True)
demo.launch(debug=True,show_error=True, share = True) |