Spaces:
Runtime error
Runtime error
File size: 1,139 Bytes
da582ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
from predict import *
from reconstructor import *
from transformers import BertTokenizer, GPT2LMHeadModel
import os
import gradio as gr
model_path = "svjack/gpt-daliy-dialogue"
tokenizer = BertTokenizer.from_pretrained(model_path)
model = GPT2LMHeadModel.from_pretrained(model_path)
obj = Obj(model, tokenizer)
example_sample = [
["θΏεͺηεΎεΆ,", 128],
["δ½ ι₯ΏεοΌ", 128],
]
def demo_func(prefix, max_length):
max_length = max(int(max_length), 32)
x = obj.predict(prefix, max_length=max_length)[0]
y = list(map(lambda x: "".join(x).replace(" ", ""),batch_as_list(re.split(r"([γ.οΌ?])" ,x), 2)))
l = predict_split(y)
assert type(l) == type([])
return {
"Dialogue Context": l
}
demo = gr.Interface(
fn=demo_func,
inputs=[gr.Text(label = "Prefix"),
gr.Number(label = "Max Length", value = 128)
],
outputs="json",
title=f"GPT Chinese Daliy Dialogue Generator π° demonstration",
examples=example_sample if example_sample else None,
cache_examples = False
)
demo.launch(server_name=None, server_port=None)
|