Spaces:
Running
Running
| ''' | |
| sudo apt-get update && sudo apt-get install git-lfs ffmpeg cbm | |
| # Clone this repository | |
| git clone https://huggingface.co/spaces/svjack/illustrious-xl-v1.0-demo | |
| # Go into the repository | |
| cd illustrious-xl-v1.0-demo | |
| ### Install dependencies ### | |
| conda create --name py310 python=3.10 | |
| conda activate py310 | |
| # Install ipykernel and add the environment to Jupyter | |
| pip install ipykernel | |
| python -m ipykernel install --user --name py310 --display-name "py310" | |
| pip install -r requirements.txt | |
| python app.py | |
| ''' | |
| # Import necessary libraries | |
| import gradio as gr | |
| import diffusers | |
| import torch | |
| # Automatically detect if CUDA is available and set the device accordingly | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Load the model from the specified file outside the function to ensure better performance | |
| model = diffusers.StableDiffusionXLPipeline.from_single_file( | |
| "https://huggingface.co/Liberata/illustrious-xl-v1.0/blob/main/Illustrious-XL-v1.0.safetensors", | |
| torch_dtype=torch.float16 | |
| ).to(device) # Move the model to the detected device | |
| # Define the function to generate an image from text using the pre-loaded model | |
| def generate_image(prompt, guidance_scale, num_inference_steps): | |
| # Generate the image from the text prompt with the specified parameters | |
| image = model(prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] | |
| return image | |
| # Create a Gradio interface for the text-to-image generation | |
| with gr.Blocks() as demo: | |
| # Add some documentation using HTML | |
| gr.HTML(""" | |
| <h2> 😊 Text-to-Image Generation with Liberata/illustrious-xl-v1.0</h2> | |
| <p>This app allows you to generate images from text prompts using the Liberata/illustrious-xl-v1.0 model.</p> | |
| <p>Simply enter a text prompt, adjust the parameters, and click the 'Generate Image' button to see the generated image.</p> | |
| """) | |
| # Create a two-column layout | |
| with gr.Row(): | |
| with gr.Column(): | |
| # Create a textbox for the user to input the text prompt | |
| prompt_input = gr.Textbox(label="Text Prompt") | |
| # Create sliders for the guidance scale and number of inference steps | |
| guidance_scale_slider = gr.Slider(1, 20, value=7.5, step=0.1, label="Guidance Scale") | |
| num_inference_steps_slider = gr.Slider(1, 100, value=50, step=1, label="Number of Inference Steps") | |
| # Add a resolution input | |
| #resolution_input = gr.Textbox(value="1536x1536", label="Resolution") | |
| with gr.Column(): | |
| # Create an image output to display the generated image | |
| image_output = gr.Image(label="Generated Image") | |
| # Create a button to trigger the image generation | |
| generate_button = gr.Button("Generate Image") | |
| # Define the event listener for the button click | |
| generate_button.click(fn=generate_image, inputs=[prompt_input, guidance_scale_slider, num_inference_steps_slider], outputs=image_output) | |
| # Add examples | |
| examples = [ | |
| ["1boy, Digital anime-style ALBEDO has light gray, messy hair, blue eyes. Shy look, in white & blue hoodie, at cozy café table with food. Shelf background"], | |
| ["1boy ,Digital anime-style CHONGYUN has shiny silver hair, green eyes. Cheerful expression, in bright blue T-shirt, at luxurious restaurant with Belgian chocolates. Elegant crystal chandelier background."], | |
| ["A fox drinking tea under a cherry blossom tree, anime style, 4K resolution"], | |
| ["Night view of a futuristic city, cyberpunk style, neon lights"], | |
| ["Medieval knight battling a dragon, epic scene, oil painting texture"] | |
| ] | |
| gr.Examples(examples, [prompt_input, guidance_scale_slider, num_inference_steps_slider]) | |
| # Launch the Gradio app with share=True | |
| if __name__ == "__main__": | |
| demo.launch(share=True, show_error=True) |