Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 1,927 Bytes
			
			| a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | import torch
from torch import nn
class NN2(nn.Module):
    def __init__(self):
        super().__init__()
    def forward(self, data):
        desc1, desc2 = data["descriptors0"].cuda(), data["descriptors1"].cuda()
        kpts1, kpts2 = data["keypoints0"].cuda(), data["keypoints1"].cuda()
        # torch.cuda.synchronize()
        # t = time.time()
        if kpts1.shape[1] <= 1 or kpts2.shape[1] <= 1:  # no keypoints
            shape0, shape1 = kpts1.shape[:-1], kpts2.shape[:-1]
            return {
                "matches0": kpts1.new_full(shape0, -1, dtype=torch.int),
                "matches1": kpts2.new_full(shape1, -1, dtype=torch.int),
                "matching_scores0": kpts1.new_zeros(shape0),
                "matching_scores1": kpts2.new_zeros(shape1),
            }
        sim = torch.matmul(desc1.squeeze().T, desc2.squeeze())
        ids1 = torch.arange(0, sim.shape[0], device=desc1.device)
        nn12 = torch.argmax(sim, dim=1)
        nn21 = torch.argmax(sim, dim=0)
        mask = torch.eq(ids1, nn21[nn12])
        matches = torch.stack(
            [torch.masked_select(ids1, mask), torch.masked_select(nn12, mask)]
        )
        # matches = torch.stack([ids1, nn12])
        indices0 = torch.ones((1, desc1.shape[-1]), dtype=int) * -1
        mscores0 = torch.ones((1, desc1.shape[-1]), dtype=float) * -1
        # torch.cuda.synchronize()
        # print(time.time() - t)
        matches_0 = matches[0].cpu().int().numpy()
        matches_1 = matches[1].cpu().int()
        for i in range(matches.shape[-1]):
            indices0[0, matches_0[i]] = matches_1[i].int()
            mscores0[0, matches_0[i]] = sim[matches_0[i], matches_1[i]]
        return {
            "matches0": indices0,  # use -1 for invalid match
            "matches1": indices0,  # use -1 for invalid match
            "matching_scores0": mscores0,
            "matching_scores1": mscores0,
        }
 | 
 
			
