Spaces:
Running
Running
| # Copyright 2019-present NAVER Corp. | |
| # CC BY-NC-SA 3.0 | |
| # Available only for non-commercial use | |
| import pdb | |
| import numpy as np | |
| import matplotlib.pyplot as pl | |
| def make_colorwheel(): | |
| """ | |
| Generates a color wheel for optical flow visualization as presented in: | |
| Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) | |
| URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf | |
| According to the C++ source code of Daniel Scharstein | |
| According to the Matlab source code of Deqing Sun | |
| Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py | |
| Copyright (c) 2018 Tom Runia | |
| """ | |
| RY = 15 | |
| YG = 6 | |
| GC = 4 | |
| CB = 11 | |
| BM = 13 | |
| MR = 6 | |
| ncols = RY + YG + GC + CB + BM + MR | |
| colorwheel = np.zeros((ncols, 3)) | |
| col = 0 | |
| # RY | |
| colorwheel[0:RY, 0] = 255 | |
| colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY) | |
| col = col + RY | |
| # YG | |
| colorwheel[col : col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG) | |
| colorwheel[col : col + YG, 1] = 255 | |
| col = col + YG | |
| # GC | |
| colorwheel[col : col + GC, 1] = 255 | |
| colorwheel[col : col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC) | |
| col = col + GC | |
| # CB | |
| colorwheel[col : col + CB, 1] = 255 - np.floor(255 * np.arange(CB) / CB) | |
| colorwheel[col : col + CB, 2] = 255 | |
| col = col + CB | |
| # BM | |
| colorwheel[col : col + BM, 2] = 255 | |
| colorwheel[col : col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM) | |
| col = col + BM | |
| # MR | |
| colorwheel[col : col + MR, 2] = 255 - np.floor(255 * np.arange(MR) / MR) | |
| colorwheel[col : col + MR, 0] = 255 | |
| return colorwheel | |
| def flow_compute_color(u, v, convert_to_bgr=False): | |
| """ | |
| Applies the flow color wheel to (possibly clipped) flow components u and v. | |
| According to the C++ source code of Daniel Scharstein | |
| According to the Matlab source code of Deqing Sun | |
| :param u: np.ndarray, input horizontal flow | |
| :param v: np.ndarray, input vertical flow | |
| :param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB | |
| :return: | |
| Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py | |
| Copyright (c) 2018 Tom Runia | |
| """ | |
| flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) | |
| colorwheel = make_colorwheel() # shape [55x3] | |
| ncols = colorwheel.shape[0] | |
| rad = np.sqrt(np.square(u) + np.square(v)) | |
| a = np.arctan2(-v, -u) / np.pi | |
| fk = (a + 1) / 2 * (ncols - 1) | |
| k0 = np.floor(fk).astype(np.int32) | |
| k1 = k0 + 1 | |
| k1[k1 == ncols] = 0 | |
| f = fk - k0 | |
| for i in range(colorwheel.shape[1]): | |
| tmp = colorwheel[:, i] | |
| col0 = tmp[k0] / 255.0 | |
| col1 = tmp[k1] / 255.0 | |
| col = (1 - f) * col0 + f * col1 | |
| idx = rad <= 1 | |
| col[idx] = 1 - rad[idx] * (1 - col[idx]) | |
| col[~idx] = col[~idx] * 0.75 # out of range? | |
| # Note the 2-i => BGR instead of RGB | |
| ch_idx = 2 - i if convert_to_bgr else i | |
| flow_image[:, :, ch_idx] = np.floor(255 * col) | |
| return flow_image | |
| def flow_to_color(flow_uv, clip_flow=None, convert_to_bgr=False): | |
| """ | |
| Expects a two dimensional flow image of shape [H,W,2] | |
| According to the C++ source code of Daniel Scharstein | |
| According to the Matlab source code of Deqing Sun | |
| :param flow_uv: np.ndarray of shape [H,W,2] | |
| :param clip_flow: float, maximum clipping value for flow | |
| :return: | |
| Copied from https://github.com/tomrunia/OpticalFlow_Visualization/blob/master/flow_vis.py | |
| Copyright (c) 2018 Tom Runia | |
| """ | |
| assert flow_uv.ndim == 3, "input flow must have three dimensions" | |
| assert flow_uv.shape[2] == 2, "input flow must have shape [H,W,2]" | |
| if clip_flow is not None: | |
| flow_uv = np.clip(flow_uv, 0, clip_flow) | |
| u = flow_uv[:, :, 0] | |
| v = flow_uv[:, :, 1] | |
| rad = np.sqrt(np.square(u) + np.square(v)) | |
| rad_max = np.max(rad) | |
| epsilon = 1e-5 | |
| u = u / (rad_max + epsilon) | |
| v = v / (rad_max + epsilon) | |
| return flow_compute_color(u, v, convert_to_bgr) | |
| def show_flow(img0, img1, flow, mask=None): | |
| img0 = np.asarray(img0) | |
| img1 = np.asarray(img1) | |
| if mask is None: | |
| mask = 1 | |
| mask = np.asarray(mask) | |
| if mask.ndim == 2: | |
| mask = mask[:, :, None] | |
| assert flow.ndim == 3 | |
| assert flow.shape[:2] == img0.shape[:2] and flow.shape[2] == 2 | |
| def noticks(): | |
| pl.xticks([]) | |
| pl.yticks([]) | |
| fig = pl.figure("showing correspondences") | |
| ax1 = pl.subplot(221) | |
| ax1.numaxis = 0 | |
| pl.imshow(img0 * mask) | |
| noticks() | |
| ax2 = pl.subplot(222) | |
| ax2.numaxis = 1 | |
| pl.imshow(img1) | |
| noticks() | |
| ax = pl.subplot(212) | |
| ax.numaxis = 0 | |
| flow_img = flow_to_color(np.where(np.isnan(flow), 0, flow)) | |
| pl.imshow(flow_img * mask) | |
| noticks() | |
| pl.subplots_adjust(0.01, 0.01, 0.99, 0.99, wspace=0.02, hspace=0.02) | |
| def motion_notify_callback(event): | |
| if event.inaxes is None: | |
| return | |
| x, y = event.xdata, event.ydata | |
| ax1.lines = [] | |
| ax2.lines = [] | |
| try: | |
| x, y = int(x + 0.5), int(y + 0.5) | |
| ax1.plot(x, y, "+", ms=10, mew=2, color="blue", scalex=False, scaley=False) | |
| x, y = flow[y, x] + (x, y) | |
| ax2.plot(x, y, "+", ms=10, mew=2, color="red", scalex=False, scaley=False) | |
| # we redraw only the concerned axes | |
| renderer = fig.canvas.get_renderer() | |
| ax1.draw(renderer) | |
| ax2.draw(renderer) | |
| fig.canvas.blit(ax1.bbox) | |
| fig.canvas.blit(ax2.bbox) | |
| except IndexError: | |
| return | |
| cid_move = fig.canvas.mpl_connect("motion_notify_event", motion_notify_callback) | |
| print("Move your mouse over the images to show matches (ctrl-C to quit)") | |
| pl.show() | |