Spaces:
Running
Running
| import io | |
| from loguru import logger | |
| import cv2 | |
| import numpy as np | |
| import h5py | |
| import torch | |
| from numpy.linalg import inv | |
| MEGADEPTH_CLIENT = SCANNET_CLIENT = None | |
| # --- DATA IO --- | |
| def load_array_from_s3( | |
| path, | |
| client, | |
| cv_type, | |
| use_h5py=False, | |
| ): | |
| byte_str = client.Get(path) | |
| try: | |
| if not use_h5py: | |
| raw_array = np.fromstring(byte_str, np.uint8) | |
| data = cv2.imdecode(raw_array, cv_type) | |
| else: | |
| f = io.BytesIO(byte_str) | |
| data = np.array(h5py.File(f, "r")["/depth"]) | |
| except Exception as ex: | |
| print(f"==> Data loading failure: {path}") | |
| raise ex | |
| assert data is not None | |
| return data | |
| def imread_gray(path, augment_fn=None, client=SCANNET_CLIENT): | |
| cv_type = cv2.IMREAD_GRAYSCALE if augment_fn is None else cv2.IMREAD_COLOR | |
| if str(path).startswith("s3://"): | |
| image = load_array_from_s3(str(path), client, cv_type) | |
| else: | |
| image = cv2.imread(str(path), cv_type) | |
| if augment_fn is not None: | |
| image = cv2.imread(str(path), cv2.IMREAD_COLOR) | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| image = augment_fn(image) | |
| image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | |
| return image # (h, w) | |
| def get_resized_wh(w, h, resize=None): | |
| if (resize is not None) and (max(h, w) > resize): # resize the longer edge | |
| scale = resize / max(h, w) | |
| w_new, h_new = int(round(w * scale)), int(round(h * scale)) | |
| else: | |
| w_new, h_new = w, h | |
| return w_new, h_new | |
| def get_divisible_wh(w, h, df=None): | |
| if df is not None: | |
| w_new, h_new = map(lambda x: int(x // df * df), [w, h]) | |
| else: | |
| w_new, h_new = w, h | |
| return w_new, h_new | |
| def pad_bottom_right(inp, pad_size, ret_mask=False): | |
| assert isinstance(pad_size, int) and pad_size >= max( | |
| inp.shape[-2:] | |
| ), f"{pad_size} < {max(inp.shape[-2:])}" | |
| mask = None | |
| if inp.ndim == 2: | |
| padded = np.zeros((pad_size, pad_size), dtype=inp.dtype) | |
| padded[: inp.shape[0], : inp.shape[1]] = inp | |
| if ret_mask: | |
| mask = np.zeros((pad_size, pad_size), dtype=bool) | |
| mask[: inp.shape[0], : inp.shape[1]] = True | |
| elif inp.ndim == 3: | |
| padded = np.zeros((inp.shape[0], pad_size, pad_size), dtype=inp.dtype) | |
| padded[:, : inp.shape[1], : inp.shape[2]] = inp | |
| if ret_mask: | |
| mask = np.zeros((inp.shape[0], pad_size, pad_size), dtype=bool) | |
| mask[:, : inp.shape[1], : inp.shape[2]] = True | |
| else: | |
| raise NotImplementedError() | |
| return padded, mask | |
| # --- MEGADEPTH --- | |
| def read_megadepth_gray(path, resize=None, df=None, padding=False, augment_fn=None): | |
| """ | |
| Args: | |
| resize (int, optional): the longer edge of resized images. None for no resize. | |
| padding (bool): If set to 'True', zero-pad resized images to squared size. | |
| augment_fn (callable, optional): augments images with pre-defined visual effects | |
| Returns: | |
| image (torch.tensor): (1, h, w) | |
| mask (torch.tensor): (h, w) | |
| scale (torch.tensor): [w/w_new, h/h_new] | |
| """ | |
| # read image | |
| image = imread_gray(path, augment_fn, client=MEGADEPTH_CLIENT) | |
| # resize image | |
| w, h = image.shape[1], image.shape[0] | |
| w_new, h_new = get_resized_wh(w, h, resize) | |
| w_new, h_new = get_divisible_wh(w_new, h_new, df) | |
| image = cv2.resize(image, (w_new, h_new)) | |
| scale = torch.tensor([w / w_new, h / h_new], dtype=torch.float) | |
| if padding: # padding | |
| pad_to = resize # max(h_new, w_new) | |
| image, mask = pad_bottom_right(image, pad_to, ret_mask=True) | |
| else: | |
| mask = None | |
| image = ( | |
| torch.from_numpy(image).float()[None] / 255 | |
| ) # (h, w) -> (1, h, w) and normalized | |
| mask = torch.from_numpy(mask) if mask is not None else None | |
| return image, mask, scale | |
| def read_megadepth_depth(path, pad_to=None): | |
| if str(path).startswith("s3://"): | |
| depth = load_array_from_s3(path, MEGADEPTH_CLIENT, None, use_h5py=True) | |
| else: | |
| depth = np.array(h5py.File(path, "r")["depth"]) | |
| if pad_to is not None: | |
| depth, _ = pad_bottom_right(depth, pad_to, ret_mask=False) | |
| depth = torch.from_numpy(depth).float() # (h, w) | |
| return depth | |
| # --- ScanNet --- | |
| def read_scannet_gray(path, resize=(640, 480), augment_fn=None): | |
| """ | |
| Args: | |
| resize (tuple): align image to depthmap, in (w, h). | |
| augment_fn (callable, optional): augments images with pre-defined visual effects | |
| Returns: | |
| image (torch.tensor): (1, h, w) | |
| mask (torch.tensor): (h, w) | |
| scale (torch.tensor): [w/w_new, h/h_new] | |
| """ | |
| # read and resize image | |
| image = imread_gray(path, augment_fn) | |
| image = cv2.resize(image, resize) | |
| # (h, w) -> (1, h, w) and normalized | |
| image = torch.from_numpy(image).float()[None] / 255 | |
| return image | |
| # ---- evaluation datasets: HLoc, Aachen, InLoc | |
| def read_img_gray(path, resize=None, down_factor=16): | |
| # read and resize image | |
| image = imread_gray(path, None) | |
| w, h = image.shape[1], image.shape[0] | |
| if (resize is not None) and (max(h, w) > resize): | |
| scale = float(resize / max(h, w)) | |
| w_new, h_new = int(round(w * scale)), int(round(h * scale)) | |
| else: | |
| w_new, h_new = w, h | |
| w_new, h_new = get_divisible_wh(w_new, h_new, down_factor) | |
| image = cv2.resize(image, (w_new, h_new)) | |
| # (h, w) -> (1, h, w) and normalized | |
| image = torch.from_numpy(image).float()[None] / 255 | |
| scale = torch.tensor([w / w_new, h / h_new], dtype=torch.float) | |
| return image, scale | |
| def read_scannet_depth(path): | |
| if str(path).startswith("s3://"): | |
| depth = load_array_from_s3(str(path), SCANNET_CLIENT, cv2.IMREAD_UNCHANGED) | |
| else: | |
| depth = cv2.imread(str(path), cv2.IMREAD_UNCHANGED) | |
| depth = depth / 1000 | |
| depth = torch.from_numpy(depth).float() # (h, w) | |
| return depth | |
| def read_scannet_pose(path): | |
| """Read ScanNet's Camera2World pose and transform it to World2Camera. | |
| Returns: | |
| pose_w2c (np.ndarray): (4, 4) | |
| """ | |
| cam2world = np.loadtxt(path, delimiter=" ") | |
| world2cam = inv(cam2world) | |
| return world2cam | |
| def read_scannet_intrinsic(path): | |
| """Read ScanNet's intrinsic matrix and return the 3x3 matrix.""" | |
| intrinsic = np.loadtxt(path, delimiter=" ") | |
| return intrinsic[:-1, :-1] | |