Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| # Copyright 2024 Google LLC | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # https://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Demo script for performing OmniGlue inference.""" | |
| import sys | |
| import time | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from src import omniglue | |
| from src.omniglue import utils | |
| from PIL import Image | |
| def main(argv) -> None: | |
| if len(argv) != 3: | |
| print("error - usage: python demo.py <img1_fp> <img2_fp>") | |
| return | |
| # Load images. | |
| print("> Loading images...") | |
| image0 = np.array(Image.open(argv[1])) | |
| image1 = np.array(Image.open(argv[2])) | |
| # Load models. | |
| print("> Loading OmniGlue (and its submodules: SuperPoint & DINOv2)...") | |
| start = time.time() | |
| og = omniglue.OmniGlue( | |
| og_export="./models/omniglue.onnx", | |
| sp_export="./models/sp_v6.onnx", | |
| dino_export="./models/dinov2_vitb14_pretrain.pth", | |
| ) | |
| print(f"> \tTook {time.time() - start} seconds.") | |
| # Perform inference. | |
| print("> Finding matches...") | |
| start = time.time() | |
| match_kp0, match_kp1, match_confidences = og.FindMatches(image0, image1) | |
| num_matches = match_kp0.shape[0] | |
| print(f"> \tFound {num_matches} matches.") | |
| print(f"> \tTook {time.time() - start} seconds.") | |
| # Filter by confidence (0.02). | |
| print("> Filtering matches...") | |
| match_threshold = 0.02 # Choose any value [0.0, 1.0). | |
| keep_idx = [] | |
| for i in range(match_kp0.shape[0]): | |
| if match_confidences[i] > match_threshold: | |
| keep_idx.append(i) | |
| num_filtered_matches = len(keep_idx) | |
| match_kp0 = match_kp0[keep_idx] | |
| match_kp1 = match_kp1[keep_idx] | |
| match_confidences = match_confidences[keep_idx] | |
| print( | |
| f"> \tFound {num_filtered_matches}/{num_matches} above threshold {match_threshold}" | |
| ) | |
| # Visualize. | |
| print("> Visualizing matches...") | |
| viz = utils.visualize_matches( | |
| image0, | |
| image1, | |
| match_kp0, | |
| match_kp1, | |
| np.eye(num_filtered_matches), | |
| show_keypoints=True, | |
| highlight_unmatched=True, | |
| title=f"{num_filtered_matches} matches", | |
| line_width=2, | |
| ) | |
| plt.figure(figsize=(20, 10), dpi=100, facecolor="w", edgecolor="k") | |
| plt.axis("off") | |
| plt.imshow(viz) | |
| plt.imsave("./demo_output.png", viz) | |
| print("> \tSaved visualization to ./demo_output.png") | |
| if __name__ == "__main__": | |
| main(sys.argv) | |