Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import torch | |
| import yaml | |
| import time | |
| from collections import OrderedDict, namedtuple | |
| import os | |
| import sys | |
| ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
| sys.path.insert(0, ROOT_DIR) | |
| from sgmnet import matcher as SGM_Model | |
| from superglue import matcher as SG_Model | |
| import argparse | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--matcher_name", type=str, default="SGM", help="number of processes." | |
| ) | |
| parser.add_argument( | |
| "--config_path", | |
| type=str, | |
| default="configs/cost/sgm_cost.yaml", | |
| help="number of processes.", | |
| ) | |
| parser.add_argument( | |
| "--num_kpt", type=int, default=4000, help="keypoint number, default:100" | |
| ) | |
| parser.add_argument( | |
| "--iter_num", type=int, default=100, help="keypoint number, default:100" | |
| ) | |
| def test_cost(test_data, model): | |
| with torch.no_grad(): | |
| # warm up call | |
| _ = model(test_data) | |
| torch.cuda.synchronize() | |
| a = time.time() | |
| for _ in range(int(args.iter_num)): | |
| _ = model(test_data) | |
| torch.cuda.synchronize() | |
| b = time.time() | |
| print("Average time per run(ms): ", (b - a) / args.iter_num * 1e3) | |
| print("Peak memory(MB): ", torch.cuda.max_memory_allocated() / 1e6) | |
| if __name__ == "__main__": | |
| torch.backends.cudnn.benchmark = False | |
| args = parser.parse_args() | |
| with open(args.config_path, "r") as f: | |
| model_config = yaml.load(f) | |
| model_config = namedtuple("model_config", model_config.keys())( | |
| *model_config.values() | |
| ) | |
| if args.matcher_name == "SGM": | |
| model = SGM_Model(model_config) | |
| elif args.matcher_name == "SG": | |
| model = SG_Model(model_config) | |
| model.cuda(), model.eval() | |
| test_data = { | |
| "x1": torch.rand(1, args.num_kpt, 2).cuda() - 0.5, | |
| "x2": torch.rand(1, args.num_kpt, 2).cuda() - 0.5, | |
| "desc1": torch.rand(1, args.num_kpt, 128).cuda(), | |
| "desc2": torch.rand(1, args.num_kpt, 128).cuda(), | |
| } | |
| test_cost(test_data, model) | |