Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import random
|
8 |
+
import shutil
|
9 |
+
|
10 |
+
if not os.path.exists("sd-ggml"):
|
11 |
+
os.system("git clone https://huggingface.co/svjack/sd-ggml")
|
12 |
+
else:
|
13 |
+
shutil.rmtree("sd-ggml")
|
14 |
+
assert os.path.exists("sd-ggml")
|
15 |
+
os.chdir("sd-ggml")
|
16 |
+
assert os.path.exists("stable-diffusion.cpp")
|
17 |
+
os.system("cmake stable-diffusion.cpp")
|
18 |
+
os.system("cmake --build . --config Release")
|
19 |
+
assert os.path.exists("bin")
|
20 |
+
|
21 |
+
'''
|
22 |
+
./bin/sd -m ../../../Downloads1/deliberate-ggml-model-q4_0.bin --sampling-method "euler_a" -o "fire-fighter-euler_a-7.png" -p "Anthropomorphic cat dressed as a fire fighter" --steps 7
|
23 |
+
./bin/sd -m ../../../Downloads/anime-ggml-model-q4_0.bin --sampling-method "dpm++2mv2" -o "couple-dpm++2mv2-7-anime.png" -p "In this scene, there's a couple (represented by 👨 and 👩) who share an intense passion or attraction towards each other (symbolized by 🔥). The setting takes place in cold weather conditions represented by snowflakes ❄️" --steps 7
|
24 |
+
'''
|
25 |
+
|
26 |
+
def process(model_path ,prompt, num_samples, image_resolution, sample_steps, seed,):
|
27 |
+
from PIL import Image
|
28 |
+
from uuid import uuid1
|
29 |
+
output_path = "output_image_dir"
|
30 |
+
if not os.path.exists(output_path):
|
31 |
+
os.mkdir(output_path)
|
32 |
+
else:
|
33 |
+
shutil.rmtree(output_path)
|
34 |
+
assert os.path.exists(output_path)
|
35 |
+
|
36 |
+
run_format = './bin/sd -m {} --sampling-method "dpm++2mv2" -o "{}/{}.png" -p "{}" --steps {} -H {} -W {}'
|
37 |
+
images = []
|
38 |
+
for i in range(num_samples):
|
39 |
+
uid = str(uuid1())
|
40 |
+
run_cmd = run_format.format(model_path, output_path,
|
41 |
+
uid, prompt, sample_steps, image_resolution,
|
42 |
+
image_resolution)
|
43 |
+
print("run cmd: {}".format(run_cmd))
|
44 |
+
os.system(run_cmd)
|
45 |
+
assert os.path.exists(os.path.join(output_path, "{}.png".format(uid)))
|
46 |
+
image = Image.open(os.path.join(output_path, "{}.png".format(uid)))
|
47 |
+
images.append(np.asarray(image))
|
48 |
+
results = images
|
49 |
+
return results
|
50 |
+
#return [255 - detected_map] + results
|
51 |
+
|
52 |
+
block = gr.Blocks().queue()
|
53 |
+
with block:
|
54 |
+
with gr.Row():
|
55 |
+
gr.Markdown("## Rapid Diffusion model from warp-ai/wuerstchen")
|
56 |
+
#gr.Markdown("This _example_ was **drive** from <br/><b><h4>[https://github.com/svjack/ControlLoRA-Chinese](https://github.com/svjack/ControlLoRA-Chinese)</h4></b>\n")
|
57 |
+
with gr.Row():
|
58 |
+
with gr.Column():
|
59 |
+
#input_image = gr.Image(source='upload', type="numpy", value = "hate_dog.png")
|
60 |
+
model_list = list(map(lambda x: os.path.join("models", x), os.listdir("models")))
|
61 |
+
assert model_list
|
62 |
+
model_path = gr.Dropdown(
|
63 |
+
model_list, value = model_list[0],
|
64 |
+
label="GGML Models"
|
65 |
+
)
|
66 |
+
prompt = gr.Textbox(label="Prompt", value = "Anthropomorphic cat dressed as a fire fighter")
|
67 |
+
run_button = gr.Button(label="Run")
|
68 |
+
with gr.Accordion("Advanced options", open=False):
|
69 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
70 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
|
71 |
+
#low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
|
72 |
+
#high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
|
73 |
+
sample_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=8, step=1)
|
74 |
+
#scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
75 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
76 |
+
#eta = gr.Number(label="eta", value=0.0)
|
77 |
+
#a_prompt = gr.Textbox(label="Added Prompt", value='')
|
78 |
+
#n_prompt = gr.Textbox(label="Negative Prompt",
|
79 |
+
# value='低质量,模糊,混乱')
|
80 |
+
with gr.Column():
|
81 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
|
82 |
+
#ips = [None, prompt, None, None, num_samples, image_resolution, sample_steps, None, seed, None, None, None]
|
83 |
+
ips = [model_path ,prompt, num_samples, image_resolution, sample_steps, seed]
|
84 |
+
run_button.click(fn=process, inputs=ips, outputs=[result_gallery], show_progress = True)
|
85 |
+
|
86 |
+
|
87 |
+
block.launch(server_name='0.0.0.0')
|