Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import shutil
|
7 |
+
|
8 |
+
import copy
|
9 |
+
import json
|
10 |
+
import gc
|
11 |
+
import random
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
'''
|
15 |
+
models
|
16 |
+
images
|
17 |
+
custom.css
|
18 |
+
sd_cfg.json
|
19 |
+
'''
|
20 |
+
|
21 |
+
if not os.path.exists("sd-ggml-cpp-dp"):
|
22 |
+
os.system("git clone https://huggingface.co/svjack/sd-ggml-cpp-dp")
|
23 |
+
else:
|
24 |
+
shutil.rmtree("sd-ggml-cpp-dp")
|
25 |
+
os.system("git clone https://huggingface.co/svjack/sd-ggml-cpp-dp")
|
26 |
+
assert os.path.exists("sd-ggml-cpp-dp")
|
27 |
+
os.chdir("sd-ggml-cpp-dp")
|
28 |
+
assert os.path.exists("stable-diffusion.cpp")
|
29 |
+
os.system("cmake stable-diffusion.cpp")
|
30 |
+
os.system("cmake --build . --config Release")
|
31 |
+
assert os.path.exists("bin")
|
32 |
+
|
33 |
+
def process(model_path ,prompt, num_samples, image_resolution, sample_steps, seed,):
|
34 |
+
from PIL import Image
|
35 |
+
from uuid import uuid1
|
36 |
+
output_path = "output_image_dir"
|
37 |
+
if not os.path.exists(output_path):
|
38 |
+
os.mkdir(output_path)
|
39 |
+
else:
|
40 |
+
shutil.rmtree(output_path)
|
41 |
+
os.mkdir(output_path)
|
42 |
+
assert os.path.exists(output_path)
|
43 |
+
|
44 |
+
run_format = './bin/sd -m {} --sampling-method "dpm++2mv2" -o "{}/{}.png" -p "{}" --steps {} -H {} -W {} -s {}'
|
45 |
+
images = []
|
46 |
+
for i in range(num_samples):
|
47 |
+
uid = str(uuid1())
|
48 |
+
run_cmd = run_format.format(model_path, output_path,
|
49 |
+
uid, prompt, sample_steps, image_resolution,
|
50 |
+
image_resolution, seed + i)
|
51 |
+
print("run cmd: {}".format(run_cmd))
|
52 |
+
os.system(run_cmd)
|
53 |
+
assert os.path.exists(os.path.join(output_path, "{}.png".format(uid)))
|
54 |
+
image = Image.open(os.path.join(output_path, "{}.png".format(uid)))
|
55 |
+
images.append(np.asarray(image))
|
56 |
+
results = images
|
57 |
+
return results
|
58 |
+
|
59 |
+
model_list = list(map(lambda x: os.path.join("models", x), os.listdir("models")))
|
60 |
+
assert model_list
|
61 |
+
|
62 |
+
sdxl_loras_raw = []
|
63 |
+
with open("sd_cfg.json", "r") as file:
|
64 |
+
data = json.load(file)
|
65 |
+
sdxl_loras_raw = [
|
66 |
+
{
|
67 |
+
"image": item["image"],
|
68 |
+
"title": item["title"],
|
69 |
+
"repo": item["repo"],
|
70 |
+
"trigger_word": item["trigger_word"],
|
71 |
+
"model_path": item["model_path"]
|
72 |
+
#"weights": item["weights"],
|
73 |
+
#"is_compatible": item["is_compatible"],
|
74 |
+
#"is_pivotal": item.get("is_pivotal", False),
|
75 |
+
#"text_embedding_weights": item.get("text_embedding_weights", None),
|
76 |
+
#"likes": item.get("likes", 0),
|
77 |
+
#"downloads": item.get("downloads", 0),
|
78 |
+
#"is_nc": item.get("is_nc", False)
|
79 |
+
}
|
80 |
+
for item in data
|
81 |
+
]
|
82 |
+
|
83 |
+
sdxl_loras_raw = list(filter(lambda d: d["model_path"] in model_list, sdxl_loras_raw))
|
84 |
+
assert sdxl_loras_raw
|
85 |
+
|
86 |
+
|
87 |
+
def update_selection(selected_state: gr.SelectData, sdxl_loras):
|
88 |
+
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
89 |
+
instance_prompt = sdxl_loras[selected_state.index]["trigger_word"]
|
90 |
+
new_placeholder = "Type a prompt. This applies for all prompts, no need for a trigger word" if instance_prompt == "" else "Type a prompt to use your selected LoRA"
|
91 |
+
#weight_name = sdxl_loras[selected_state.index]["weights"]
|
92 |
+
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ "
|
93 |
+
is_compatible = True
|
94 |
+
is_pivotal = True
|
95 |
+
|
96 |
+
use_with_diffusers = f'''
|
97 |
+
## Using [`{lora_repo}`](https://huggingface.co/{lora_repo})
|
98 |
+
|
99 |
+
## Use it with diffusers:
|
100 |
+
'''
|
101 |
+
use_with_uis = f'''
|
102 |
+
## Use it with Comfy UI, Invoke AI, SD.Next, AUTO1111:
|
103 |
+
|
104 |
+
### Download the `*.safetensors` weights of [here](https://huggingface.co/{lora_repo})
|
105 |
+
|
106 |
+
- [ComfyUI guide](https://comfyanonymous.github.io/ComfyUI_examples/lora/)
|
107 |
+
- [Invoke AI guide](https://invoke-ai.github.io/InvokeAI/features/CONCEPTS/?h=lora#using-loras)
|
108 |
+
- [SD.Next guide](https://github.com/vladmandic/automatic)
|
109 |
+
- [AUTOMATIC1111 guide](https://stable-diffusion-art.com/lora/)
|
110 |
+
'''
|
111 |
+
return (
|
112 |
+
updated_text,
|
113 |
+
instance_prompt,
|
114 |
+
gr.update(placeholder=new_placeholder),
|
115 |
+
selected_state,
|
116 |
+
use_with_diffusers,
|
117 |
+
use_with_uis,
|
118 |
+
)
|
119 |
+
|
120 |
+
def check_selected(selected_state):
|
121 |
+
if not selected_state:
|
122 |
+
raise gr.Error("You must select a Model")
|
123 |
+
|
124 |
+
def shuffle_gallery(sdxl_loras):
|
125 |
+
random.shuffle(sdxl_loras)
|
126 |
+
return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras
|
127 |
+
|
128 |
+
def swap_gallery(order, sdxl_loras):
|
129 |
+
if(order == "random"):
|
130 |
+
return shuffle_gallery(sdxl_loras)
|
131 |
+
else:
|
132 |
+
#sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get(order, 0), reverse=True)
|
133 |
+
sorted_gallery = sorted(sdxl_loras, key=lambda x: x["title"], reverse=False)
|
134 |
+
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
|
135 |
+
|
136 |
+
'''
|
137 |
+
def run_lora(prompt, negative, lora_scale, selected_state, sdxl_loras,
|
138 |
+
progress=gr.Progress(track_tqdm=True)):
|
139 |
+
'''
|
140 |
+
def run_lora(prompt, selected_state, sdxl_loras,
|
141 |
+
image_resolution, sample_steps, seed,
|
142 |
+
progress=gr.Progress(track_tqdm=True)):
|
143 |
+
#global last_lora, last_merged, last_fused, pipe
|
144 |
+
|
145 |
+
'''
|
146 |
+
if negative == "":
|
147 |
+
negative = None
|
148 |
+
'''
|
149 |
+
|
150 |
+
if not selected_state:
|
151 |
+
raise gr.Error("You must select a Model")
|
152 |
+
repo_name = sdxl_loras[selected_state.index]["repo"]
|
153 |
+
model_path = sdxl_loras[selected_state.index]["model_path"]
|
154 |
+
#weight_name = sdxl_loras[selected_state.index]["weights"]
|
155 |
+
|
156 |
+
'''
|
157 |
+
image = pipe(
|
158 |
+
prompt=prompt,
|
159 |
+
negative_prompt=negative,
|
160 |
+
width=1024,
|
161 |
+
height=1024,
|
162 |
+
num_inference_steps=20,
|
163 |
+
guidance_scale=7.5,
|
164 |
+
).images[0]
|
165 |
+
last_lora = repo_name
|
166 |
+
gc.collect()
|
167 |
+
'''
|
168 |
+
num_samples = 1
|
169 |
+
#### image_resolution : 512
|
170 |
+
#### sample_steps : 8
|
171 |
+
#### seed : 20
|
172 |
+
image = process(model_path ,prompt, num_samples, image_resolution, sample_steps, seed,)[0]
|
173 |
+
image = Image.fromarray(image.astype(np.uint8))
|
174 |
+
#return image, gr.update(visible=True)
|
175 |
+
return image
|
176 |
+
|
177 |
+
with gr.Blocks(css="custom.css") as demo:
|
178 |
+
#with gr.Blocks() as demo:
|
179 |
+
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
180 |
+
title = gr.HTML(
|
181 |
+
"""<h1><img src="https://i.imgur.com/vT48NAO.png" alt="SD"> StableDiffusion GGML Explorer</h1>""",
|
182 |
+
elem_id="title",
|
183 |
+
)
|
184 |
+
|
185 |
+
selected_state = gr.State()
|
186 |
+
with gr.Row(elem_id="main_app"):
|
187 |
+
with gr.Box(elem_id="gallery_box"):
|
188 |
+
order_gallery = gr.Radio(choices=["random", "alphabetical"],
|
189 |
+
value="random", label="Order by", elem_id="order_radio")
|
190 |
+
gallery = gr.Gallery(
|
191 |
+
#value=[(item["image"], item["title"]) for item in sdxl_loras_raw],
|
192 |
+
label="SD Model Gallery",
|
193 |
+
allow_preview=True,
|
194 |
+
#rows = 1,
|
195 |
+
columns=2,
|
196 |
+
#scale = 3,
|
197 |
+
min_width = 256,
|
198 |
+
#object_fit = "scale-down",
|
199 |
+
elem_id="gallery",
|
200 |
+
show_share_button=False,
|
201 |
+
height=512
|
202 |
+
)
|
203 |
+
with gr.Column():
|
204 |
+
prompt_title = gr.Markdown(
|
205 |
+
value="### Click on a Model in the gallery to select it",
|
206 |
+
visible=True,
|
207 |
+
elem_id="selected_model",
|
208 |
+
)
|
209 |
+
with gr.Row():
|
210 |
+
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1,
|
211 |
+
placeholder="Type a prompt after selecting a Model", elem_id="prompt")
|
212 |
+
button = gr.Button("Run", elem_id="run_button")
|
213 |
+
'''
|
214 |
+
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
|
215 |
+
community_icon = gr.HTML(community_icon_html)
|
216 |
+
loading_icon = gr.HTML(loading_icon_html)
|
217 |
+
share_button = gr.Button("Share to community", elem_id="share-btn")
|
218 |
+
'''
|
219 |
+
result = gr.Image(
|
220 |
+
interactive=False, label="Generated Image", elem_id="result-image"
|
221 |
+
)
|
222 |
+
with gr.Accordion("Advanced options", open=False):
|
223 |
+
#negative = gr.Textbox(label="Negative Prompt")
|
224 |
+
#weight = gr.Slider(0, 10, value=0.8, step=0.1, label="LoRA weight")
|
225 |
+
#negative = ""
|
226 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
|
227 |
+
sample_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=8, step=1)
|
228 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
229 |
+
|
230 |
+
order_gallery.change(
|
231 |
+
fn=swap_gallery,
|
232 |
+
inputs=[order_gallery, gr_sdxl_loras],
|
233 |
+
outputs=[gallery, gr_sdxl_loras],
|
234 |
+
queue=False
|
235 |
+
)
|
236 |
+
gallery.select(
|
237 |
+
fn=update_selection,
|
238 |
+
inputs=[gr_sdxl_loras],
|
239 |
+
#outputs=[prompt_title, prompt, prompt, selected_state, use_diffusers, use_uis],
|
240 |
+
outputs=[prompt_title, prompt, prompt, selected_state,],
|
241 |
+
queue=False,
|
242 |
+
show_progress=False
|
243 |
+
)
|
244 |
+
prompt.submit(
|
245 |
+
fn=check_selected,
|
246 |
+
inputs=[selected_state],
|
247 |
+
queue=False,
|
248 |
+
show_progress=False
|
249 |
+
).success(
|
250 |
+
fn=run_lora,
|
251 |
+
#inputs=[prompt, negative, weight, selected_state, gr_sdxl_loras],
|
252 |
+
inputs=[prompt, selected_state, gr_sdxl_loras, image_resolution, sample_steps, seed],
|
253 |
+
#outputs=[result, share_group],
|
254 |
+
#outputs=[result,],
|
255 |
+
outputs = result
|
256 |
+
)
|
257 |
+
button.click(
|
258 |
+
fn=check_selected,
|
259 |
+
inputs=[selected_state],
|
260 |
+
queue=False,
|
261 |
+
show_progress=False
|
262 |
+
).success(
|
263 |
+
fn=run_lora,
|
264 |
+
#inputs=[prompt, negative, weight, selected_state, gr_sdxl_loras],
|
265 |
+
inputs=[prompt, selected_state, gr_sdxl_loras, image_resolution, sample_steps, seed],
|
266 |
+
#outputs=[result, share_group],
|
267 |
+
#outputs=[result,],
|
268 |
+
outputs = result
|
269 |
+
)
|
270 |
+
#share_button.click(None, [], [], _js=share_js)
|
271 |
+
demo.load(fn=shuffle_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], queue=False)
|
272 |
+
demo.queue(max_size=20)
|
273 |
+
demo.launch()
|