Spaces:
Running
Running
| import gradio as gr | |
| from loadimg import load_img | |
| import spaces | |
| from transformers import AutoModelForImageSegmentation | |
| import torch | |
| from torchvision import transforms | |
| import moviepy.editor as mp | |
| from pydub import AudioSegment | |
| from PIL import Image | |
| import numpy as np | |
| import os | |
| import tempfile | |
| import uuid | |
| torch.set_float32_matmul_precision("medium") | |
| birefnet = AutoModelForImageSegmentation.from_pretrained( | |
| "ZhengPeng7/BiRefNet", trust_remote_code=True | |
| ) | |
| birefnet.to("cuda") | |
| transform_image = transforms.Compose( | |
| [ | |
| transforms.Resize((1024, 1024)), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ] | |
| ) | |
| def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"): | |
| try: | |
| # Load the video using moviepy | |
| video = mp.VideoFileClip(vid) | |
| # Load original fps if fps value is equal to 0 | |
| if fps == 0: | |
| fps = video.fps | |
| # Extract audio from the video | |
| audio = video.audio | |
| # Extract frames at the specified FPS | |
| frames = video.iter_frames(fps=fps) | |
| # Process each frame for background removal | |
| processed_frames = [] | |
| yield gr.update(visible=True), gr.update(visible=False) | |
| if bg_type == "Video": | |
| background_video = mp.VideoFileClip(bg_video) | |
| if background_video.duration < video.duration: | |
| if video_handling == "slow_down": | |
| background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration) | |
| else: # video_handling == "loop" | |
| background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1)) | |
| background_frames = list(background_video.iter_frames(fps=fps)) # Convert to list | |
| else: | |
| background_frames = None | |
| bg_frame_index = 0 # Initialize background frame index | |
| for i, frame in enumerate(frames): | |
| pil_image = Image.fromarray(frame) | |
| if bg_type == "Color": | |
| processed_image = process(pil_image, color) | |
| elif bg_type == "Image": | |
| processed_image = process(pil_image, bg_image) | |
| elif bg_type == "Video": | |
| if video_handling == "slow_down": | |
| background_frame = background_frames[bg_frame_index % len(background_frames)] | |
| bg_frame_index += 1 | |
| background_image = Image.fromarray(background_frame) | |
| processed_image = process(pil_image, background_image) | |
| else: # video_handling == "loop" | |
| background_frame = background_frames[bg_frame_index % len(background_frames)] | |
| bg_frame_index += 1 | |
| background_image = Image.fromarray(background_frame) | |
| processed_image = process(pil_image, background_image) | |
| else: | |
| processed_image = pil_image # Default to original image if no background is selected | |
| processed_frames.append(np.array(processed_image)) | |
| yield processed_image, None | |
| # Create a new video from the processed frames | |
| processed_video = mp.ImageSequenceClip(processed_frames, fps=fps) | |
| # Add the original audio back to the processed video | |
| processed_video = processed_video.set_audio(audio) | |
| # Save the processed video to a temporary file | |
| temp_dir = "temp" | |
| os.makedirs(temp_dir, exist_ok=True) | |
| unique_filename = str(uuid.uuid4()) + ".mp4" | |
| temp_filepath = os.path.join(temp_dir, unique_filename) | |
| processed_video.write_videofile(temp_filepath, codec="libx264") | |
| yield gr.update(visible=False), gr.update(visible=True) | |
| # Return the path to the temporary file | |
| yield processed_image, temp_filepath | |
| except Exception as e: | |
| print(f"Error: {e}") | |
| yield gr.update(visible=False), gr.update(visible=True) | |
| yield None, f"Error processing video: {e}" | |
| def process(image, bg): | |
| image_size = image.size | |
| input_images = transform_image(image).unsqueeze(0).to("cuda") | |
| # Prediction | |
| with torch.no_grad(): | |
| preds = birefnet(input_images)[-1].sigmoid().cpu() | |
| pred = preds[0].squeeze() | |
| pred_pil = transforms.ToPILImage()(pred) | |
| mask = pred_pil.resize(image_size) | |
| if isinstance(bg, str) and bg.startswith("#"): | |
| color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5)) | |
| background = Image.new("RGBA", image_size, color_rgb + (255,)) | |
| elif isinstance(bg, Image.Image): | |
| background = bg.convert("RGBA").resize(image_size) | |
| else: | |
| background = Image.open(bg).convert("RGBA").resize(image_size) | |
| # Composite the image onto the background using the mask | |
| image = Image.composite(image, background, mask) | |
| return image | |
| with gr.Blocks(theme=gr.themes.Ocean()) as demo: | |
| with gr.Row(): | |
| in_video = gr.Video(label="Input Video", interactive=True) | |
| stream_image = gr.Image(label="Streaming Output", visible=False) | |
| out_video = gr.Video(label="Final Output Video") | |
| submit_button = gr.Button("Change Background", interactive=True) | |
| with gr.Row(): | |
| fps_slider = gr.Slider( | |
| minimum=0, | |
| maximum=60, | |
| step=1, | |
| value=0, | |
| label="Output FPS (0 will inherit the original fps value)", | |
| interactive=True | |
| ) | |
| bg_type = gr.Radio(["Color", "Image", "Video"], label="Background Type", value="Color", interactive=True) | |
| color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True) | |
| bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True) | |
| bg_video = gr.Video(label="Background Video", visible=False, interactive=True) | |
| with gr.Column(visible=False) as video_handling_options: | |
| video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True) | |
| def update_visibility(bg_type): | |
| if bg_type == "Color": | |
| return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
| elif bg_type == "Image": | |
| return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) | |
| elif bg_type == "Video": | |
| return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) | |
| else: | |
| return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
| bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options]) | |
| examples = gr.Examples( | |
| [ | |
| ["rickroll-2sec.mp4", "Video", None, "background.mp4"], | |
| ["rickroll-2sec.mp4", "Image", "images.webp", None], | |
| ["rickroll-2sec.mp4", "Color", None, None], | |
| ], | |
| inputs=[in_video, bg_type, bg_image, bg_video], | |
| outputs=[stream_image, out_video], | |
| fn=fn, | |
| cache_examples=True, | |
| cache_mode="eager", | |
| ) | |
| submit_button.click( | |
| fn, | |
| inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio], | |
| outputs=[stream_image, out_video], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(show_error=True) |