File size: 6,903 Bytes
e1e1bf8
 
9c7ae16
e1e1bf8
 
 
 
 
cf8bc32
e1e1bf8
 
 
 
 
 
 
bbfa5db
e1e1bf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c7ae16
e882568
d420d33
9c7ae16
 
 
 
 
 
d420d33
9c7ae16
 
 
e882568
9c7ae16
e1e1bf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f93a3bd
 
 
 
 
 
 
f876863
1074d25
f93a3bd
 
 
 
 
e1e1bf8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
from llm_rs import AutoModel,SessionConfig,GenerationConfig,Precision,KnownModels
from huggingface_hub import space_info

repo_name = "svjack/ggml"
file_name = "wizardlm-13b-v1.1-superhot-8k.ggmlv3.q4_0.bin"

examples = [
    "How to promote Chinese traditional culture ?",
    "Explain the meaning of word Ottoman",
    "Explain the meaning of πŸ‘¨",
    "Use following emojis to generate a short description of a scene , the emojis are πŸ‘¨πŸ‘©πŸ”₯❄️",
    "Use following emojis to generate a short description of a scene , the emojis are 🌲πŸ”₯πŸ‘¨πŸ’¦",
]

session_config = SessionConfig(threads=2,batch_size=2)
model = AutoModel.from_pretrained(repo_name, model_file=file_name, session_config=session_config,verbose=True,model_type=KnownModels.Llama)

'''
model_path = "/Users/svjack/Library/Application Support/nomic.ai/GPT4All/wizardlm-13b-v1.1-superhot-8k.ggmlv3.q4_0.bin"
model = AutoModel.from_pretrained(model_path,
                                  model_type=KnownModels.Llama)
'''

def process_stream(instruction, temperature, top_p, top_k, max_new_tokens, seed):

    prompt=f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
Answer:"""
    generation_config = GenerationConfig(seed=seed,temperature=temperature,top_p=top_p,top_k=top_k,max_new_tokens=max_new_tokens)
    response = ""
    streamer = model.stream(prompt=prompt,generation_config=generation_config)
    for new_text in streamer:
        response += new_text
        yield response


with gr.Blocks(
    theme=gr.themes.Soft(),
    css=".disclaimer {font-variant-caps: all-small-caps;}",
) as demo:
    gr.Markdown(
        """<h1><center> Wizardlm-13b on CPU in Rust πŸ¦€</center></h1>

        This demo uses the [rustformers/llm](https://github.com/rustformers/llm) library via [llm-rs](https://github.com/LLukas22/llm-rs-python) on 2 CPU cores.
        """
    )

    '''
    markdown_exp_size = "##"
    lora_repo = "svjack/chatglm3-few-shot"
    lora_repo_link = "svjack/chatglm3-few-shot/?input_list_index=1"
    emoji_info = space_info(lora_repo).__dict__["cardData"]["emoji"]
    space_cnt = 1
    task_name = "[---Emojis to Image Prompt---]"
    gr.Markdown(
                    value=f"{markdown_exp_size} {task_name} few shot prompt in ChatGLM3 Few Shot space repo (click submit to activate) : [{lora_repo_link}](https://huggingface.co/spaces/{lora_repo_link}) {emoji_info}",
                    visible=True,
                    elem_id="selected_space",
                                )
    '''
    
    with gr.Row():
        with gr.Column():
            with gr.Row():
                instruction = gr.Textbox(
                    placeholder="Enter your question or instruction here",
                    label="Question/Instruction",
                    elem_id="q-input",
                )
            with gr.Accordion("Advanced Options:", open=False):
                with gr.Row():
                    with gr.Column():
                        with gr.Row():
                            temperature = gr.Slider(
                                label="Temperature",
                                value=0.8,
                                minimum=0.1,
                                maximum=1.0,
                                step=0.1,
                                interactive=True,
                                info="Higher values produce more diverse outputs",
                            )
                    with gr.Column():
                        with gr.Row():
                            top_p = gr.Slider(
                                label="Top-p (nucleus sampling)",
                                value=0.95,
                                minimum=0.0,
                                maximum=1.0,
                                step=0.01,
                                interactive=True,
                                info=(
                                    "Sample from the smallest possible set of tokens whose cumulative probability "
                                    "exceeds top_p. Set to 1 to disable and sample from all tokens."
                                ),
                            )
                    with gr.Column():
                        with gr.Row():
                            top_k = gr.Slider(
                                label="Top-k",
                                value=40,
                                minimum=5,
                                maximum=80,
                                step=1,
                                interactive=True,
                                info="Sample from a shortlist of top-k tokens β€” 0 to disable and sample from all tokens.",
                            )
                    with gr.Column():
                        with gr.Row():
                            max_new_tokens = gr.Slider(
                                label="Maximum new tokens",
                                value=256,
                                minimum=0,
                                maximum=1024,
                                step=5,
                                interactive=True,
                                info="The maximum number of new tokens to generate",
                            )

                    with gr.Column():
                        with gr.Row():
                            seed = gr.Number(
                                label="Seed",
                                value=42,
                                interactive=True,
                                info="The seed to use for the generation",
                                precision=0
                            )
    with gr.Row():
        submit = gr.Button("Submit")
    with gr.Row():
        with gr.Box():
            gr.Markdown("**Wizardlm-13b**")
            output_7b = gr.Markdown()

    with gr.Row():
        gr.Examples(
            examples=examples,
            inputs=[instruction],
            cache_examples=False,
            fn=process_stream,
            outputs=output_7b,
        )

    submit.click(
        process_stream,
        inputs=[instruction, temperature, top_p, top_k, max_new_tokens,seed],
        outputs=output_7b,
    )
    instruction.submit(
        process_stream,
        inputs=[instruction, temperature, top_p, top_k, max_new_tokens,seed],
        outputs=output_7b,
    )

with demo:
    gr.HTML(
    '''
                <div style="justify-content: center; display: flex;">
                <iframe
                src="https://svjack-chatglm3-few-shot-demo.hf.space/?input_list_index=1"
                frameborder="0"
                width="1400"
                height="768"
                ></iframe>
                </div>
    '''
    )
    
demo.queue(max_size=4, concurrency_count=1).launch(debug=True)