Spaces:
Sleeping
Sleeping
File size: 2,967 Bytes
b5e0972 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import gradio as gr
import os
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import Chroma
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
from langchain.chains import RetrievalQA
from langchain.document_loaders import PDFMinerLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from chromadb.config import Settings
# Initialize Chroma settings once
CHROMA_SETTINGS = Settings(
chroma_db_impl='duckdb+parquet',
persist_directory="db",
anonymized_telemetry=False
)
# Initialize the Chroma database on app start (assuming the database will be initialized only once)
def init_db_if_not_exists(pdf_path):
try:
# Check if the database exists and load it
db = Chroma(persist_directory=CHROMA_SETTINGS.persist_directory, client_settings=CHROMA_SETTINGS)
db.get_collection() # This line will raise an error if the collection doesn't exist
except Exception:
# If not, initialize the database
loader = PDFMinerLoader(pdf_path)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
texts = text_splitter.split_documents(documents)
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db = Chroma.from_documents(texts, embeddings, persist_directory=CHROMA_SETTINGS.persist_directory)
db.persist()
# Load model and create pipeline once
checkpoint = "MBZUAI/LaMini-Flan-T5-783M"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
base_model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.float32)
llm_pipeline = HuggingFacePipeline(pipeline=pipeline("text2text-generation", model=base_model, tokenizer=tokenizer))
def process_answer(instruction):
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
vectordb = Chroma(persist_directory=CHROMA_SETTINGS.persist_directory, embedding_function=embeddings)
retriever = vectordb.as_retriever()
qa = RetrievalQA.from_chain_type(llm=llm_pipeline, chain_type="stuff", retriever=retriever)
generated_text = qa(instruction)
return generated_text["result"]
def chatbot(pdf_file, user_question):
if pdf_file: # Only initialize if a new PDF is uploaded
init_db_if_not_exists(pdf_file.name)
try:
answer = process_answer(user_question)
return answer
except Exception as e:
return f"An error occurred: {str(e)}"
# Create Gradio Interface
iface = gr.Interface(
fn=chatbot,
inputs=[gr.inputs.File(type="file", label="Upload your PDF"), gr.inputs.Textbox(lines=1, label="Ask a Question")],
outputs="text",
title="PDF Chatbot",
description="Upload a PDF and ask questions about its content.",
)
# Run the Gradio interface
iface.launch() |