Spaces:
Runtime error
Runtime error
import streamlit as st | |
import tempfile | |
from pydub import AudioSegment | |
from pyannote.audio import Pipeline | |
from faster_whisper import WhisperModel | |
from docx import Document | |
from io import BytesIO | |
import colorsys | |
# ページ設定 | |
st.set_page_config(page_title="話者分離付き文字起こし", layout="centered") | |
st.title("🧠 話者分離付き文字起こしアプリ") | |
# Whisperモデル選択 | |
model_size = st.selectbox("Whisperモデルを選択", ["tiny", "base", "small", "medium", "large-v2"], index=2) | |
# Hugging Face トークン入力 | |
token_input = st.text_input("🔐 Hugging Face アクセストークンを入力", type="password") | |
# 音声アップロード | |
uploaded_file = st.file_uploader("🎵 音声ファイルをアップロード(mp3, wav, m4a)", type=["mp3", "wav", "m4a"]) | |
# カラーパレット生成 | |
def generate_color_palette(n): | |
colors = [] | |
for i in range(n): | |
hue = i / n | |
lightness = 0.85 | |
saturation = 0.6 | |
rgb = colorsys.hls_to_rgb(hue, lightness, saturation) | |
hex_color = '#%02x%02x%02x' % tuple(int(c * 255) for c in rgb) | |
colors.append(hex_color) | |
return colors | |
# 処理スタート | |
if uploaded_file and token_input: | |
st.audio(uploaded_file) | |
if st.button("▶️ 文字起こしスタート"): | |
status = st.info("準備中…") | |
progress = st.progress(0) | |
try: | |
# 音声を.wavに変換 | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: | |
audio = AudioSegment.from_file(uploaded_file) | |
audio.export(tmp.name, format="wav") | |
audio_path = tmp.name | |
progress.progress(20) | |
status.info("🔍 話者分離中...") | |
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=token_input) | |
diarization = pipeline(audio_path) | |
progress.progress(50) | |
status.info("📝 Whisperで文字起こし中...") | |
model = WhisperModel(model_size, compute_type="int8") | |
segments, _ = model.transcribe(audio_path, language="ja", vad_filter=True) | |
# 話者割当 | |
word_blocks = [] | |
for segment in segments: | |
start = segment.start | |
speaker = "unknown" | |
for turn in diarization.itertracks(yield_label=True): | |
if turn[0].start <= start <= turn[0].end: | |
speaker = turn[2] | |
break | |
word_blocks.append((speaker, segment.text.strip())) | |
progress.progress(80) | |
status.success("✅ 完了!") | |
# 表示と色分け | |
st.subheader("🗣️ 話者ごとの文字起こし") | |
unique_speakers = sorted(set(s for s, _ in word_blocks)) | |
colors = generate_color_palette(len(unique_speakers)) | |
color_map = {spk: col for spk, col in zip(unique_speakers, colors)} | |
for speaker, text in word_blocks: | |
st.markdown( | |
f"<div style='background-color:{color_map[speaker]}; padding:8px; border-radius:5px; margin-bottom:6px;'>" | |
f"<b>{speaker}</b>: {text}</div>", | |
unsafe_allow_html=True | |
) | |
# Wordファイル出力 | |
doc = Document() | |
for speaker, text in word_blocks: | |
doc.add_paragraph(f"{speaker}: {text}") | |
docx_io = BytesIO() | |
doc.save(docx_io) | |
docx_io.seek(0) | |
st.download_button("💾 Wordファイルでダウンロード", docx_io, file_name="transcription.docx", mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document") | |
progress.progress(100) | |
except Exception as e: | |
st.error(f"❌ エラーが発生しました:\n\n{e}") | |
elif uploaded_file and not token_input: | |
st.warning("🔐 Hugging Face のトークンを入力してください。") | |