Spaces:
No application file
No application file
File size: 456 Bytes
dc5ecd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
import gradio as gr
from transformers import pipeline
# Load pre-trained model from Hugging Face
classifier = pipeline('sentiment-analysis')
def classify_text(text):
result = classifier(text)[0]
label = result['label']
score = result['score']
return f"{label} (confidence: {score:.2f})"
# Create the Gradio interface
iface = gr.Interface(fn=classify_text, inputs=["text"], outputs=["prediction"])
# Launch the Gradio app
iface.launch()
|