File size: 1,059 Bytes
a3ff3e7 f0c1530 a3ff3e7 f0c1530 a3ff3e7 f0c1530 a3ff3e7 f0c1530 a3ff3e7 f0c1530 a3ff3e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import gradio as gr
import torch
import cv2
import numpy as np
from PIL import Image
from ultralytics import YOLO
# Load YOLOv11 Model
model_path = "best.pt"
model = YOLO(model_path)
def predict(image):
image = np.array(image)
results = model(image)
labels = []
# Draw bounding boxes and extract labels
for result in results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
conf = box.conf[0]
cls = int(box.cls[0])
label = f"{model.names[cls]} {conf:.2f}"
labels.append(label) # Store detected labels
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
return Image.fromarray(image), labels
# Gradio Interface
iface = gr.Interface(
fn=predict,
inputs="image",
outputs=["image", "text"], # Returning both image and detected labels
title="YOLOv11 Object Detection"
)
iface.launch()
|