syedmudassir16's picture
added utils.py
90c9dfa verified
from __future__ import annotations
import io
import os
import re
import subprocess
import textwrap
import time
import uuid
import wave
import emoji
import gradio as gr
import langid
import nltk
import numpy as np
import noisereduce as nr
from huggingface_hub import HfApi
# Download the 'punkt' tokenizer for the NLTK library
nltk.download("punkt")
# will use api to restart space on a unrecoverable error
HF_TOKEN = os.environ.get("HF_TOKEN")
REPO_ID = os.environ.get("REPO_ID")
api = HfApi(token=HF_TOKEN)
latent_map = {}
def get_latents(chatbot_voice, xtts_model, voice_cleanup=False):
global latent_map
if chatbot_voice not in latent_map:
speaker_wav = f"examples/{chatbot_voice}.wav"
if (voice_cleanup):
try:
cleanup_filter="lowpass=8000,highpass=75,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02"
resample_filter="-ac 1 -ar 22050"
out_filename = speaker_wav + str(uuid.uuid4()) + ".wav" #ffmpeg to know output format
#we will use newer ffmpeg as that has afftn denoise filter
shell_command = f"ffmpeg -y -i {speaker_wav} -af {cleanup_filter} {resample_filter} {out_filename}".split(" ")
command_result = subprocess.run([item for item in shell_command], capture_output=False,text=True, check=True)
speaker_wav=out_filename
print("Filtered microphone input")
except subprocess.CalledProcessError:
# There was an error - command exited with non-zero code
print("Error: failed filtering, use original microphone input")
else:
speaker_wav=speaker_wav
# gets condition latents from the model
# returns tuple (gpt_cond_latent, speaker_embedding)
latent_map[chatbot_voice] = xtts_model.get_conditioning_latents(audio_path=speaker_wav)
return latent_map[chatbot_voice]
def detect_language(prompt, xtts_supported_languages=None):
if xtts_supported_languages is None:
xtts_supported_languages = ["en","es","fr","de","it","pt","pl","tr","ru","nl","cs","ar","zh-cn","ja"]
# Fast language autodetection
if len(prompt)>15:
language_predicted=langid.classify(prompt)[0].strip() # strip need as there is space at end!
if language_predicted == "zh":
#we use zh-cn on xtts
language_predicted = "zh-cn"
if language_predicted not in xtts_supported_languages:
print(f"Detected a language not supported by xtts :{language_predicted}, switching to english for now")
gr.Warning(f"Language detected '{language_predicted}' can not be spoken properly 'yet' ")
language= "en"
else:
language = language_predicted
print(f"Language: Predicted sentence language:{language_predicted} , using language for xtts:{language}")
else:
# Hard to detect language fast in short sentence, use english default
language = "en"
print(f"Language: Prompt is short or autodetect language disabled using english for xtts")
return language
def get_voice_streaming(prompt, language, chatbot_voice, xtts_model, suffix="0"):
gpt_cond_latent, speaker_embedding = get_latents(chatbot_voice, xtts_model)
try:
t0 = time.time()
chunks = xtts_model.inference_stream(
prompt,
language,
gpt_cond_latent,
speaker_embedding,
repetition_penalty=7.0,
temperature=0.85,
)
first_chunk = True
for i, chunk in enumerate(chunks):
if first_chunk:
first_chunk_time = time.time() - t0
metrics_text = f"Latency to first audio chunk: {round(first_chunk_time*1000)} milliseconds\n"
first_chunk = False
#print(f"Received chunk {i} of audio length {chunk.shape[-1]}")
# In case output is required to be multiple voice files
# out_file = f'{char}_{i}.wav'
# write(out_file, 24000, chunk.detach().cpu().numpy().squeeze())
# audio = AudioSegment.from_file(out_file)
# audio.export(out_file, format='wav')
# return out_file
# directly return chunk as bytes for streaming
chunk = chunk.detach().cpu().numpy().squeeze()
chunk = (chunk * 32767).astype(np.int16)
yield chunk.tobytes()
except RuntimeError as e:
if "device-side assert" in str(e):
# cannot do anything on cuda device side error, need tor estart
print(
f"Exit due to: Unrecoverable exception caused by prompt:{prompt}",
flush=True,
)
gr.Warning("Unhandled Exception encounter, please retry in a minute")
print("Cuda device-assert Runtime encountered need restart")
# HF Space specific.. This error is unrecoverable need to restart space
api.restart_space(REPO_ID=REPO_ID)
else:
print("RuntimeError: non device-side assert error:", str(e))
# Does not require warning happens on empty chunk and at end
###gr.Warning("Unhandled Exception encounter, please retry in a minute")
return None
return None
except:
return None
def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=24000):
# This will create a wave header then append the frame input
# It should be first on a streaming wav file
# Other frames better should not have it (else you will hear some artifacts each chunk start)
wav_buf = io.BytesIO()
with wave.open(wav_buf, "wb") as vfout:
vfout.setnchannels(channels)
vfout.setsampwidth(sample_width)
vfout.setframerate(sample_rate)
vfout.writeframes(frame_input)
wav_buf.seek(0)
return wav_buf.read()
def format_prompt(message, history):
system_message = f"""
You are a smart mood analyser, who determines user mood. Based on the user input, classify the mood of the user into one of the four moods {Happy, Sad, Instrumental, Party}. If you are finding it difficult to classify into one of these four moods, keep the conversation going on until we classify the user’s mood. Return a single-word reply from one of the options if you have classified. Suppose you classify a sentence as happy, then just respond with "happy".
Note: Do not write anything else other than the classified mood if classified.
Note: If any question or any user text cannot be classified, follow up with a question to know the user's mood until you classify the mood.
Note: Mood should be classified only from any of these 4 classes {Happy, Sad, Instrumental, Party}, if not any of these 4 then continue with a follow-up question until you classify the mood.
Note: if user asks something like i need a coffee then do not classify the mood directly and ask more follow-up questions as asked in examples.
Examples
User: What is C programming?
LLM Response: C programming is a programming language. How are you feeling now after knowing the answer?
User: Can I get a coffee?
LLM Response: It sounds like you're in need of a little pick-me-up. How are you feeling right now? Are you looking for something upbeat, something to relax to, or maybe some instrumental music while you enjoy your coffee?
User: I feel like rocking
LLM Response: Party
User: I'm feeling so energetic today!
LLM Response: Happy
User: I'm feeling down today.
LLM Response: Sad
User: I'm ready to have some fun tonight!
LLM Response: Party
User: I need some background music while I am stuck in traffic.
LLM Response: Instrumental
User: Hi
LLM Response: Hi, how are you doing?
User: Feeling okay only.
LLM Response: Are you having a good day?
User: I don't know
LLM Response: Do you want to listen to some relaxing music?
User: No
LLM Response: How about listening to some rock and roll music?
User: Yes
LLM Response: Party
User: Where do I find an encyclopedia?
LLM Response: You can find it in any of the libraries or on the Internet. Does this answer make you happy?
User: I need a coffee
LLM Response: It sounds like you're in need of a little pick-me-up. How are you feeling right now? Are you looking for something upbeat, something to relax to, or maybe some instrumental music while you enjoy your coffee?
User: I just got promoted at work!
LLM Response: Happy
User: Today is my birthday!
LLM Response: Happy
User: I won a prize in the lottery.
LLM Response: Happy
User: I am so excited about my vacation next week!
LLM Response: Happy
User: I aced my exams!
LLM Response: Happy
User: I had a wonderful time with my family today.
LLM Response: Happy
User: I just finished a great workout!
LLM Response: Happy
User: I am feeling really good about myself today.
LLM Response: Happy
User: I finally finished my project and it was a success!
LLM Response: Happy
User: I just heard my favorite song on the radio.
LLM Response: Happy
User: My pet passed away yesterday.
LLM Response: Sad
User: I lost my job today.
LLM Response: Sad
User: I'm feeling really lonely.
LLM Response: Sad
User: I didn't get the results I wanted.
LLM Response: Sad
User: I had a fight with my best friend.
LLM Response: Sad
User: I'm feeling really overwhelmed with everything.
LLM Response: Sad
User: I just got some bad news.
LLM Response: Sad
User: I'm missing my family.
LLM Response: Sad
User: I am feeling really down today.
LLM Response: Sad
User: Nothing seems to be going right.
LLM Response: Sad
User: I need some music while I study.
LLM Response: Instrumental
User: I want to listen to something soothing while I work.
LLM Response: Instrumental
User: Do you have any recommendations for background music?
LLM Response: Instrumental
User: I'm looking for some relaxing tunes.
LLM Response: Instrumental
User: I need some music to focus on my tasks.
LLM Response: Instrumental
User: Can you suggest some ambient music for meditation?
LLM Response: Instrumental
User: What's good for background music during reading?
LLM Response: Instrumental
User: I need some calm music to help me sleep.
LLM Response: Instrumental
User: I prefer instrumental music while cooking.
LLM Response: Instrumental
User: What's the best music to play while doing yoga?
LLM Response: Instrumental
User: Let's have a blast tonight!
LLM Response: Party
User: I'm in the mood to dance!
LLM Response: Party
User: I want to celebrate all night long!
LLM Response: Party
User: Time to hit the club!
LLM Response: Party
User: I feel like partying till dawn.
LLM Response: Party
User: Let's get this party started!
LLM Response: Party
User: I'm ready to party hard tonight.
LLM Response: Party
User: I'm in the mood for some loud music and dancing!
LLM Response: Party
User: Tonight's going to be epic!
LLM Response: Party
User: Lets turn up the music and have some fun!
LLM Response: Party
"""
prompt = (
"<s>[INST]" + system_message + "[/INST]"
)
for user_prompt, bot_response in history:
if user_prompt is not None:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
if message=="":
message="Hello"
prompt += f"[INST] {message} [/INST]"
return prompt
def generate_llm_output(
prompt,
history,
llm,
temperature=0.8,
max_tokens=256,
top_p=0.95,
stop_words=["<s>","[/INST]", "</s>"]
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
stop=stop_words
)
formatted_prompt = format_prompt(prompt, history)
try:
print("LLM Input:", formatted_prompt)
# Local GGUF
stream = llm(
formatted_prompt,
**generate_kwargs,
stream=True,
)
output = ""
for response in stream:
character= response["choices"][0]["text"]
if character in stop_words:
# end of context
return
if emoji.is_emoji(character):
# Bad emoji not a meaning messes chat from next lines
return
output += response["choices"][0]["text"]
yield output
except Exception as e:
print("Unhandled Exception: ", str(e))
gr.Warning("Unfortunately Mistral is unable to process")
output = "I do not know what happened but I could not understand you ."
return output
def get_sentence(history, llm):
history = [["", None]] if history is None else history
history[-1][1] = ""
sentence_list = []
sentence_hash_list = []
text_to_generate = ""
stored_sentence = None
stored_sentence_hash = None
for character in generate_llm_output(history[-1][0], history[:-1], llm):
history[-1][1] = character.replace("<|assistant|>","")
# It is coming word by word
text_to_generate = nltk.sent_tokenize(history[-1][1].replace("\n", " ").replace("<|assistant|>"," ").replace("<|ass>","").replace("[/ASST]","").replace("[/ASSI]","").replace("[/ASS]","").replace("","").strip())
if len(text_to_generate) > 1:
dif = len(text_to_generate) - len(sentence_list)
if dif == 1 and len(sentence_list) != 0:
continue
if dif == 2 and len(sentence_list) != 0 and stored_sentence is not None:
continue
# All this complexity due to trying append first short sentence to next one for proper language auto-detect
if stored_sentence is not None and stored_sentence_hash is None and dif>1:
#means we consumed stored sentence and should look at next sentence to generate
sentence = text_to_generate[len(sentence_list)+1]
elif stored_sentence is not None and len(text_to_generate)>2 and stored_sentence_hash is not None:
print("Appending stored")
sentence = stored_sentence + text_to_generate[len(sentence_list)+1]
stored_sentence_hash = None
else:
sentence = text_to_generate[len(sentence_list)]
# too short sentence just append to next one if there is any
# this is for proper language detection
if len(sentence)<=15 and stored_sentence_hash is None and stored_sentence is None:
if sentence[-1] in [".","!","?"]:
if stored_sentence_hash != hash(sentence):
stored_sentence = sentence
stored_sentence_hash = hash(sentence)
print("Storing:",stored_sentence)
continue
sentence_hash = hash(sentence)
if stored_sentence_hash is not None and sentence_hash == stored_sentence_hash:
continue
if sentence_hash not in sentence_hash_list:
sentence_hash_list.append(sentence_hash)
sentence_list.append(sentence)
print("New Sentence: ", sentence)
yield (sentence, history)
# return that final sentence token
try:
last_sentence = nltk.sent_tokenize(history[-1][1].replace("\n", " ").replace("<|ass>","").replace("[/ASST]","").replace("[/ASSI]","").replace("[/ASS]","").replace("","").strip())[-1]
sentence_hash = hash(last_sentence)
if sentence_hash not in sentence_hash_list:
if stored_sentence is not None and stored_sentence_hash is not None:
last_sentence = stored_sentence + last_sentence
stored_sentence = stored_sentence_hash = None
print("Last Sentence with stored:",last_sentence)
sentence_hash_list.append(sentence_hash)
sentence_list.append(last_sentence)
print("Last Sentence: ", last_sentence)
yield (last_sentence, history)
except:
print("ERROR on last sentence history is :", history)
# will generate speech audio file per sentence
def generate_speech_for_sentence(history, chatbot_voice, sentence, xtts_model, xtts_supported_languages=None, filter_output=True, return_as_byte=False):
language = "autodetect"
wav_bytestream = b""
if len(sentence)==0:
print("EMPTY SENTENCE")
return
# Sometimes prompt </s> coming on output remove it
# Some post process for speech only
sentence = sentence.replace("</s>", "")
# remove code from speech
sentence = re.sub("```.*```", "", sentence, flags=re.DOTALL)
sentence = re.sub("`.*`", "", sentence, flags=re.DOTALL)
sentence = re.sub("\(.*\)", "", sentence, flags=re.DOTALL)
sentence = sentence.replace("```", "")
sentence = sentence.replace("...", " ")
sentence = sentence.replace("(", " ")
sentence = sentence.replace(")", " ")
sentence = sentence.replace("<|assistant|>","")
if len(sentence)==0:
print("EMPTY SENTENCE after processing")
return
# A fast fix for last chacter, may produce weird sounds if it is with text
#if (sentence[-1] in ["!", "?", ".", ","]) or (sentence[-2] in ["!", "?", ".", ","]):
# # just add a space
# sentence = sentence[:-1] + " " + sentence[-1]
# regex does the job well
sentence= re.sub("([^\x00-\x7F]|\w)(\.|\。|\?|\!)",r"\1 \2\2",sentence)
print("Sentence for speech:", sentence)
try:
SENTENCE_SPLIT_LENGTH=350
if len(sentence)<SENTENCE_SPLIT_LENGTH:
# no problem continue on
sentence_list = [sentence]
else:
# Until now nltk likely split sentences properly but we need additional
# check for longer sentence and split at last possible position
# Do whatever necessary, first break at hypens then spaces and then even split very long words
sentence_list=textwrap.wrap(sentence,SENTENCE_SPLIT_LENGTH)
print("SPLITTED LONG SENTENCE:",sentence_list)
for sentence in sentence_list:
if any(c.isalnum() for c in sentence):
if language=="autodetect":
#on first call autodetect, nexts sentence calls will use same language
language = detect_language(sentence, xtts_supported_languages)
#exists at least 1 alphanumeric (utf-8)
audio_stream = get_voice_streaming(
sentence, language, chatbot_voice, xtts_model
)
else:
# likely got a ' or " or some other text without alphanumeric in it
audio_stream = None
# XTTS is actually using streaming response but we are playing audio by sentence
# If you want direct XTTS voice streaming (send each chunk to voice ) you may set DIRECT_STREAM=1 environment variable
if audio_stream is not None:
frame_length = 0
for chunk in audio_stream:
try:
wav_bytestream += chunk
frame_length += len(chunk)
except:
# hack to continue on playing. sometimes last chunk is empty , will be fixed on next TTS
continue
# Filter output for better voice
if filter_output:
data_s16 = np.frombuffer(wav_bytestream, dtype=np.int16, count=len(wav_bytestream)//2, offset=0)
float_data = data_s16 * 0.5**15
reduced_noise = nr.reduce_noise(y=float_data, sr=24000,prop_decrease =0.8,n_fft=1024)
wav_bytestream = (reduced_noise * 32767).astype(np.int16)
wav_bytestream = wav_bytestream.tobytes()
if audio_stream is not None:
if not return_as_byte:
audio_unique_filename = "/tmp/"+ str(uuid.uuid4())+".wav"
with wave.open(audio_unique_filename, "w") as f:
f.setnchannels(1)
# 2 bytes per sample.
f.setsampwidth(2)
f.setframerate(24000)
f.writeframes(wav_bytestream)
return (history , gr.Audio.update(value=audio_unique_filename, autoplay=True))
else:
return (history , gr.Audio.update(value=wav_bytestream, autoplay=True))
except RuntimeError as e:
if "device-side assert" in str(e):
# cannot do anything on cuda device side error, need tor estart
print(
f"Exit due to: Unrecoverable exception caused by prompt:{sentence}",
flush=True,
)
gr.Warning("Unhandled Exception encounter, please retry in a minute")
print("Cuda device-assert Runtime encountered need restart")
# HF Space specific.. This error is unrecoverable need to restart space
api.restart_space(REPO_ID=REPO_ID)
else:
print("RuntimeError: non device-side assert error:", str(e))
raise e
print("All speech ended")
return