import evaluate from datasets import Features, Value from sklearn.metrics import accuracy_score _CITATION = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _DESCRIPTION = """ Accuracy is the proportion of correct predictions among the total number of cases processed. It can be computed with: Accuracy = (TP + TN) / (TP + TN + FP + FN) Where: TP: True positive TN: True negative FP: False positive FN: False negative """ _KWARGS_DESCRIPTION = """ Args: predictions (`list` of `str`): Predicted labels. references (`list` of `str`): Ground truth labels. Returns: accuracy (`float` or `int`): Accuracy score. Minimum possible value is 0. Maximum possible value is 1.0, or the number of examples input, if `normalize` is set to `True`.. A higher score means higher accuracy. """ class ClassificationEvaluatorTest(evaluate.Metric): def _info(self): return evaluate.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=Features( {"predictions": Value("string"), "references": Value("string")} ), ) def _compute(self, predictions, references): return { "accuracy": float( accuracy_score( references, predictions, normalize=True, sample_weight=None ) ) }