sym / app.py
symlink's picture
test
50cc1b6
raw
history blame
846 Bytes
# Load model directly
#from transformers import AutoProcessor, AutoModelForCausalLM
#processor = AutoProcessor.from_pretrained("lmms-lab/LLaVA-NeXT-Video-32B-Qwen")
#model = AutoModelForCausalLM.from_pretrained("lmms-lab/LLaVA-NeXT-Video-32B-Qwen")
import gradio as gr
from transformers import pipeline
pipeline = pipeline(task="image-classification", model="llms-lab/LLaVA-NeXT-Video-32BQwen")
def predict(input_img):
predictions = pipeline(input_img)
return input_img, {p["label"]: p["score"] for p in predictions}
gradio_app = gr.Interface(
predict,
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
title="Hot Dog? Or Not?",
)
if __name__ == "__main__":
gradio_app.launch()