Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -9,11 +9,10 @@ import io
|
|
9 |
from PIL import Image
|
10 |
import os
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
os.environ["
|
15 |
-
os.environ["
|
16 |
-
os.environ["HF_HUB_CACHE"] = "/app/cache"
|
17 |
|
18 |
# Initialize FastAPI app
|
19 |
app = FastAPI(title="PromptAgro Image Generator API")
|
@@ -27,21 +26,83 @@ app.add_middleware(
|
|
27 |
allow_headers=["*"],
|
28 |
)
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
@app.get("/")
|
38 |
async def root():
|
39 |
-
"""Health check endpoint"""
|
40 |
return {
|
41 |
"status": "alive",
|
42 |
"service": "PromptAgro Image Generator",
|
43 |
-
"model_loaded":
|
44 |
-
"
|
|
|
|
|
|
|
|
|
45 |
}
|
46 |
|
47 |
@app.post("/generate/")
|
@@ -50,19 +111,31 @@ async def generate_image(prompt: str = Form(...)):
|
|
50 |
Generate product packaging image from input prompt.
|
51 |
Returns image file directly (your original approach).
|
52 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
print(f"ποΈ Generating image for prompt: {prompt}")
|
54 |
|
55 |
-
|
56 |
-
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
66 |
|
67 |
@app.post("/generate-json/")
|
68 |
async def generate_image_json(
|
@@ -75,6 +148,13 @@ async def generate_image_json(
|
|
75 |
"""
|
76 |
Generate image and return as JSON with base64 data (for frontend integration).
|
77 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
print(f"ποΈ Generating image for prompt: {prompt}")
|
79 |
|
80 |
try:
|
@@ -116,6 +196,13 @@ async def generate_packaging_specific(
|
|
116 |
"""
|
117 |
Generate packaging with PromptAgro-specific prompt engineering
|
118 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
# Create professional prompt for agricultural packaging
|
120 |
prompt = f"""Professional agricultural product packaging design for {product_name},
|
121 |
modern clean style, {colors.replace(',', ' and ')} color scheme, premium typography,
|
|
|
9 |
from PIL import Image
|
10 |
import os
|
11 |
|
12 |
+
# Set cache directory to a writable location
|
13 |
+
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
|
14 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface_cache"
|
15 |
+
os.environ["HF_HUB_CACHE"] = "/tmp/huggingface_cache"
|
|
|
16 |
|
17 |
# Initialize FastAPI app
|
18 |
app = FastAPI(title="PromptAgro Image Generator API")
|
|
|
26 |
allow_headers=["*"],
|
27 |
)
|
28 |
|
29 |
+
# Global variable for the pipeline
|
30 |
+
pipe = None
|
31 |
+
model_loading = False
|
32 |
+
|
33 |
+
def load_model_if_needed():
|
34 |
+
"""Load model lazily when first request arrives"""
|
35 |
+
global pipe, model_loading
|
36 |
+
|
37 |
+
if pipe is not None:
|
38 |
+
return True
|
39 |
+
|
40 |
+
if model_loading:
|
41 |
+
return False # Already loading, wait
|
42 |
+
|
43 |
+
model_loading = True
|
44 |
+
success = load_model()
|
45 |
+
model_loading = False
|
46 |
+
return success
|
47 |
+
|
48 |
+
def load_model():
|
49 |
+
"""Load the Stable Diffusion model with proper error handling"""
|
50 |
+
global pipe
|
51 |
+
|
52 |
+
print("π Loading Stable Diffusion Model...")
|
53 |
+
model_id = "rupeshs/LCM-runwayml-stable-diffusion-v1-5"
|
54 |
+
|
55 |
+
try:
|
56 |
+
# Create cache directory if it doesn't exist
|
57 |
+
os.makedirs("/tmp/huggingface_cache", exist_ok=True)
|
58 |
+
|
59 |
+
# Use appropriate dtype based on device
|
60 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
61 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
62 |
+
|
63 |
+
print(f"π± Device: {device}, dtype: {torch_dtype}")
|
64 |
+
|
65 |
+
# Load the model with cache directory specified
|
66 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
67 |
+
model_id,
|
68 |
+
torch_dtype=torch_dtype,
|
69 |
+
cache_dir="/tmp/huggingface_cache",
|
70 |
+
local_files_only=False
|
71 |
+
)
|
72 |
+
|
73 |
+
pipe = pipe.to(device)
|
74 |
+
|
75 |
+
# Enable memory efficient attention if available
|
76 |
+
if hasattr(pipe, 'enable_xformers_memory_efficient_attention'):
|
77 |
+
try:
|
78 |
+
pipe.enable_xformers_memory_efficient_attention()
|
79 |
+
print("β
XFormers memory efficient attention enabled")
|
80 |
+
except Exception:
|
81 |
+
print("β οΈ XFormers not available, using default attention")
|
82 |
+
|
83 |
+
print(f"β
Model Loaded successfully on {device}")
|
84 |
+
return True
|
85 |
+
|
86 |
+
except Exception as e:
|
87 |
+
print(f"β Failed to load model: {e}")
|
88 |
+
pipe = None
|
89 |
+
return False
|
90 |
+
|
91 |
+
# Don't load model on startup - do it lazily
|
92 |
+
# model_loaded = load_model()
|
93 |
|
94 |
@app.get("/")
|
95 |
async def root():
|
96 |
+
"""Health check endpoint with enhanced status"""
|
97 |
return {
|
98 |
"status": "alive",
|
99 |
"service": "PromptAgro Image Generator",
|
100 |
+
"model_loaded": pipe is not None,
|
101 |
+
"model_loading": model_loading,
|
102 |
+
"device": "cuda" if torch.cuda.is_available() else "cpu",
|
103 |
+
"model_status": "loaded" if pipe is not None else ("loading" if model_loading else "not_loaded"),
|
104 |
+
"torch_dtype": "float16" if torch.cuda.is_available() else "float32",
|
105 |
+
"ready_for_requests": pipe is not None
|
106 |
}
|
107 |
|
108 |
@app.post("/generate/")
|
|
|
111 |
Generate product packaging image from input prompt.
|
112 |
Returns image file directly (your original approach).
|
113 |
"""
|
114 |
+
# Lazy load model on first request
|
115 |
+
if not load_model_if_needed():
|
116 |
+
if model_loading:
|
117 |
+
raise HTTPException(status_code=503, detail="Model is loading, please wait...")
|
118 |
+
else:
|
119 |
+
raise HTTPException(status_code=503, detail="Model failed to load. Please check logs.")
|
120 |
+
|
121 |
print(f"ποΈ Generating image for prompt: {prompt}")
|
122 |
|
123 |
+
try:
|
124 |
+
# Generate image (your original approach)
|
125 |
+
image = pipe(prompt).images[0]
|
126 |
|
127 |
+
# Save image to temp file (your original approach)
|
128 |
+
filename = f"/tmp/{uuid.uuid4().hex}.png"
|
129 |
+
image.save(filename)
|
130 |
|
131 |
+
print(f"π¦ Image saved to {filename}")
|
132 |
|
133 |
+
# Return image file as response (your original approach)
|
134 |
+
return FileResponse(filename, media_type="image/png")
|
135 |
+
|
136 |
+
except Exception as e:
|
137 |
+
print(f"β Image generation failed: {e}")
|
138 |
+
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
|
139 |
|
140 |
@app.post("/generate-json/")
|
141 |
async def generate_image_json(
|
|
|
148 |
"""
|
149 |
Generate image and return as JSON with base64 data (for frontend integration).
|
150 |
"""
|
151 |
+
# Lazy load model on first request
|
152 |
+
if not load_model_if_needed():
|
153 |
+
if model_loading:
|
154 |
+
raise HTTPException(status_code=503, detail="Model is loading, please wait...")
|
155 |
+
else:
|
156 |
+
raise HTTPException(status_code=503, detail="Model failed to load. Please check logs.")
|
157 |
+
|
158 |
print(f"ποΈ Generating image for prompt: {prompt}")
|
159 |
|
160 |
try:
|
|
|
196 |
"""
|
197 |
Generate packaging with PromptAgro-specific prompt engineering
|
198 |
"""
|
199 |
+
# Lazy load model on first request
|
200 |
+
if not load_model_if_needed():
|
201 |
+
if model_loading:
|
202 |
+
raise HTTPException(status_code=503, detail="Model is loading, please wait...")
|
203 |
+
else:
|
204 |
+
raise HTTPException(status_code=503, detail="Model failed to load. Please check logs.")
|
205 |
+
|
206 |
# Create professional prompt for agricultural packaging
|
207 |
prompt = f"""Professional agricultural product packaging design for {product_name},
|
208 |
modern clean style, {colors.replace(',', ' and ')} color scheme, premium typography,
|