Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,36 @@
|
|
1 |
import os
|
2 |
import pandas as pd
|
|
|
|
|
|
|
3 |
from groq import Groq
|
4 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
-
import gradio as gr
|
7 |
import numpy as np
|
8 |
|
9 |
-
# Initialize the Groq client
|
10 |
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
11 |
|
12 |
-
# Load the proprietary dataset from
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Preprocess the dataset by creating summaries and vectors
|
17 |
def preprocess_data(df):
|
|
|
18 |
df['summary'] = df.apply(lambda row: f"{row['title']} ({row['release_date']}): {row['overview']} "
|
19 |
f"Genres: {row['genres']} Keywords: {row['keywords']}", axis=1)
|
20 |
return df
|
@@ -42,24 +58,30 @@ def generate_summary_with_groq(query, retrieved_text):
|
|
42 |
)
|
43 |
return chat_completion.choices[0].message.content
|
44 |
|
45 |
-
#
|
46 |
-
def rag_application(
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
+
import zipfile
|
4 |
+
import requests
|
5 |
+
import io
|
6 |
from groq import Groq
|
7 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
9 |
import numpy as np
|
10 |
|
11 |
+
# Initialize the Groq client
|
12 |
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
13 |
|
14 |
+
# Load the proprietary dataset from GitHub
|
15 |
+
def load_dataset_from_github(zip_url):
|
16 |
+
# Download the zip file
|
17 |
+
response = requests.get(zip_url)
|
18 |
+
if response.status_code == 200:
|
19 |
+
# Extract the zip file
|
20 |
+
with zipfile.ZipFile(io.BytesIO(response.content)) as z:
|
21 |
+
z.extractall("dataset") # Extract to the 'dataset' folder
|
22 |
+
# Load the CSV file (assuming it's named 'movie_dataset.csv' inside the zip)
|
23 |
+
return pd.read_csv("dataset/movie_dataset.csv")
|
24 |
+
else:
|
25 |
+
raise Exception("Failed to download the dataset.")
|
26 |
+
|
27 |
+
# URL of the ZIP file containing the dataset on GitHub
|
28 |
+
zip_url = "https://github.com/YourUsername/movie-dataset/archive/refs/heads/main.zip"
|
29 |
+
movies_df = load_dataset_from_github(zip_url)
|
30 |
|
31 |
# Preprocess the dataset by creating summaries and vectors
|
32 |
def preprocess_data(df):
|
33 |
+
# Combine relevant text columns to form a concise summary for each movie
|
34 |
df['summary'] = df.apply(lambda row: f"{row['title']} ({row['release_date']}): {row['overview']} "
|
35 |
f"Genres: {row['genres']} Keywords: {row['keywords']}", axis=1)
|
36 |
return df
|
|
|
58 |
)
|
59 |
return chat_completion.choices[0].message.content
|
60 |
|
61 |
+
# Main interactive loop
|
62 |
+
def rag_application():
|
63 |
+
print("Welcome to the Movie RAG-based Application!")
|
64 |
+
while True:
|
65 |
+
# Prompt user for a query
|
66 |
+
user_query = input("Ask a question about movies or type 'exit' to quit: ")
|
67 |
+
|
68 |
+
if user_query.lower() in ['exit', 'no', 'quit']:
|
69 |
+
print("Exiting the application. Goodbye!")
|
70 |
+
break
|
71 |
+
|
72 |
+
# Retrieve relevant movie summaries
|
73 |
+
retrieved_movies = retrieve_similar_movies(user_query, movies_df, tfidf_matrix)
|
74 |
+
retrieved_summaries = " ".join(retrieved_movies['summary'].values)
|
75 |
+
|
76 |
+
# Generate a summary response based on retrieved movies
|
77 |
+
generated_summary = generate_summary_with_groq(user_query, retrieved_summaries)
|
78 |
+
print("Generated Summary:", generated_summary)
|
79 |
+
|
80 |
+
# Ask if user wants to continue or exit
|
81 |
+
continue_query = input("Do you have another question? (yes/no): ")
|
82 |
+
if continue_query.lower() != 'yes':
|
83 |
+
print("Exiting the application. Goodbye!")
|
84 |
+
break
|
85 |
|
86 |
+
# Run the application
|
87 |
+
rag_application()
|