File size: 3,498 Bytes
8dc6340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdf69bb
 
 
8dc6340
 
 
 
 
 
fdf69bb
 
 
 
 
 
8dc6340
 
 
 
fdf69bb
8dc6340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0607fdb
8dc6340
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import nltk
nltk.download('punkt')
from nltk.stem.lancaster import LancasterStemmer
import numpy as np
import tflearn
import tensorflow
import random
import json
import pandas as pd
import pickle
import gradio as gr
from tensorflow.python.util.nest import is_sequence_or_composite

stemmer = LancasterStemmer()

with open("intents.json") as file:
    data = json.load(file)

with open("data.pickle", "rb") as f:
  words, labels, training, output = pickle.load(f)

net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")
# print('model loaded successfully')


def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]

    s_words = nltk.word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words]

    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
            
    return np.array(bag)


def chat(message, history=None):
    if history is None:
        history = []
    message = message.lower()
    results = model.predict([bag_of_words(message, words)])
    results_index = np.argmax(results)
    tag = labels[results_index]

    for tg in data["intents"]:
        if tg['tag'] == tag:
            responses = tg['responses']
            response = random.choice(responses)
            break
    else:
        response = "Sorry, I didn't understand that."

    history.append((message, response))
    return history, history


chatbot = gr.Chatbot(label="Chat")
css = """
footer {display:none !important}
.output-markdown{display:none !important}
.gr-button-primary {
    z-index: 14;
    height: 43px;
    width: 130px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important; 
    background: none rgb(17, 20, 45) !important;
    border: none !important;
    text-align: center !important;
    font-family: Poppins !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 12px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: none !important;
}
.gr-button-primary:hover{
    z-index: 14;
    height: 43px;
    width: 130px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important;
    background: none rgb(37, 56, 133) !important;
    border: none !important;
    text-align: center !important;
    font-family: Poppins !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 12px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
}
.hover\:bg-orange-50:hover {
    --tw-bg-opacity: 1 !important;
    background-color: rgb(229,225,255) !important;
}

div[data-testid="user"] {
  background-color: #253885 !important;
}

.h-\[40vh\]{
height: 70vh !important;
}

"""
demo = gr.Interface(
    chat,
    [gr.Textbox(lines=1, label="Message"), "state"],
    [chatbot, "state"],
    allow_flagging="never",
    title="Wellbeing for All, ** I am your Best Friend **",
    css=css
)
if __name__ == "__main__":
    demo.launch()