Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,91 +1,24 @@
|
|
1 |
import nltk
|
|
|
|
|
2 |
import numpy as np
|
3 |
import tflearn
|
4 |
-
import tensorflow
|
5 |
import random
|
6 |
import json
|
|
|
7 |
import pickle
|
8 |
import gradio as gr
|
9 |
-
from
|
10 |
|
11 |
-
# Ensure nltk downloads
|
12 |
-
nltk.download('punkt')
|
13 |
stemmer = LancasterStemmer()
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
# Combined CSS for styling and blurred background
|
19 |
-
css = f"""
|
20 |
-
body {{
|
21 |
-
margin: 0;
|
22 |
-
padding: 0;
|
23 |
-
overflow: hidden;
|
24 |
-
}}
|
25 |
-
.gradio-container {{
|
26 |
-
position: relative;
|
27 |
-
z-index: 1; /* Ensure UI elements are above the background */
|
28 |
-
}}
|
29 |
-
/* Blurred background image */
|
30 |
-
.blurred-background {{
|
31 |
-
position: fixed;
|
32 |
-
top: 0;
|
33 |
-
left: 0;
|
34 |
-
width: 100%;
|
35 |
-
height: 100%;
|
36 |
-
z-index: -1; /* Send background image behind all UI elements */
|
37 |
-
background-image: url("{flower_image_url}");
|
38 |
-
background-size: cover;
|
39 |
-
background-position: center;
|
40 |
-
filter: blur(10px); /* Adjust blur ratio here */
|
41 |
-
opacity: 0.8; /* Optional: Add slight transparency for a subtle effect */
|
42 |
-
}}
|
43 |
-
footer {{
|
44 |
-
display: none !important;
|
45 |
-
}}
|
46 |
-
div[data-testid="user"] {{
|
47 |
-
background-color: #253885 !important;
|
48 |
-
}}
|
49 |
-
.h-\[40vh\] {{
|
50 |
-
height: 70vh !important;
|
51 |
-
}}
|
52 |
-
.gr-button-primary {{
|
53 |
-
z-index: 14;
|
54 |
-
height: 43px;
|
55 |
-
width: 130px;
|
56 |
-
padding: 0px;
|
57 |
-
cursor: pointer !important;
|
58 |
-
background: none rgb(17, 20, 45) !important;
|
59 |
-
border: none !important;
|
60 |
-
text-align: center !important;
|
61 |
-
font-family: Poppins !important;
|
62 |
-
font-size: 14px !important;
|
63 |
-
font-weight: 500 !important;
|
64 |
-
color: rgb(255, 255, 255) !important;
|
65 |
-
border-radius: 12px !important;
|
66 |
-
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
|
67 |
-
}}
|
68 |
-
.gr-button-primary:hover {{
|
69 |
-
background: none rgb(37, 56, 133) !important;
|
70 |
-
}}
|
71 |
-
"""
|
72 |
-
|
73 |
-
#""""""""""""""""""""""""" Application Code Starts Here """""""""""""""""""""""""""""""""""""""""""""
|
74 |
-
|
75 |
-
# Load data and handle errors
|
76 |
-
try:
|
77 |
-
with open("intents.json") as file:
|
78 |
-
data = json.load(file)
|
79 |
-
except FileNotFoundError:
|
80 |
-
raise FileNotFoundError("The file 'intents.json' was not found.")
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
words, labels, training, output = pickle.load(f)
|
85 |
-
except FileNotFoundError:
|
86 |
-
raise FileNotFoundError("The file 'data.pickle' was not found.")
|
87 |
|
88 |
-
# Build the model
|
89 |
net = tflearn.input_data(shape=[None, len(training[0])])
|
90 |
net = tflearn.fully_connected(net, 8)
|
91 |
net = tflearn.fully_connected(net, 8)
|
@@ -93,17 +26,13 @@ net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
|
|
93 |
net = tflearn.regression(net)
|
94 |
|
95 |
model = tflearn.DNN(net)
|
96 |
-
|
97 |
-
|
98 |
-
except Exception as e:
|
99 |
-
raise FileNotFoundError("Model file 'MentalHealthChatBotmodel.tflearn' could not be loaded.") from e
|
100 |
|
101 |
|
102 |
def bag_of_words(s, words):
|
103 |
-
"""
|
104 |
-
Convert a user input sentence into a bag-of-words representation.
|
105 |
-
"""
|
106 |
bag = [0 for _ in range(len(words))]
|
|
|
107 |
s_words = nltk.word_tokenize(s)
|
108 |
s_words = [stemmer.stem(word.lower()) for word in s_words]
|
109 |
|
@@ -111,46 +40,89 @@ def bag_of_words(s, words):
|
|
111 |
for i, w in enumerate(words):
|
112 |
if w == se:
|
113 |
bag[i] = 1
|
|
|
114 |
return np.array(bag)
|
115 |
|
116 |
|
117 |
def chat(message, history):
|
118 |
-
"""
|
119 |
-
Handle chat interaction.
|
120 |
-
"""
|
121 |
history = history or []
|
122 |
message = message.lower()
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
results_index = np.argmax(results)
|
127 |
-
tag = labels[results_index]
|
128 |
-
except Exception as e:
|
129 |
-
response = "I'm sorry, I couldn't understand your message."
|
130 |
-
history.append((message, response))
|
131 |
-
return history, history
|
132 |
|
133 |
for tg in data["intents"]:
|
134 |
-
|
135 |
-
|
136 |
-
response = random.choice(responses)
|
137 |
-
break
|
138 |
-
else:
|
139 |
-
response = "I'm sorry, I don't have a response for that."
|
140 |
|
|
|
|
|
|
|
141 |
history.append((message, response))
|
142 |
return history, history
|
143 |
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
demo = gr.Interface(
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
allow_flagging="never",
|
151 |
-
title="
|
152 |
css=css
|
153 |
)
|
154 |
-
|
155 |
if __name__ == "__main__":
|
156 |
demo.launch()
|
|
|
1 |
import nltk
|
2 |
+
nltk.download('punkt')
|
3 |
+
from nltk.stem.lancaster import LancasterStemmer
|
4 |
import numpy as np
|
5 |
import tflearn
|
6 |
+
import tensorflow
|
7 |
import random
|
8 |
import json
|
9 |
+
import pandas as pd
|
10 |
import pickle
|
11 |
import gradio as gr
|
12 |
+
from tensorflow.python.util.nest import is_sequence_or_composite
|
13 |
|
|
|
|
|
14 |
stemmer = LancasterStemmer()
|
15 |
|
16 |
+
with open("intents.json") as file:
|
17 |
+
data = json.load(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
with open("data.pickle", "rb") as f:
|
20 |
+
words, labels, training, output = pickle.load(f)
|
|
|
|
|
|
|
21 |
|
|
|
22 |
net = tflearn.input_data(shape=[None, len(training[0])])
|
23 |
net = tflearn.fully_connected(net, 8)
|
24 |
net = tflearn.fully_connected(net, 8)
|
|
|
26 |
net = tflearn.regression(net)
|
27 |
|
28 |
model = tflearn.DNN(net)
|
29 |
+
model.load("MentalHealthChatBotmodel.tflearn")
|
30 |
+
# print('model loaded successfully')
|
|
|
|
|
31 |
|
32 |
|
33 |
def bag_of_words(s, words):
|
|
|
|
|
|
|
34 |
bag = [0 for _ in range(len(words))]
|
35 |
+
|
36 |
s_words = nltk.word_tokenize(s)
|
37 |
s_words = [stemmer.stem(word.lower()) for word in s_words]
|
38 |
|
|
|
40 |
for i, w in enumerate(words):
|
41 |
if w == se:
|
42 |
bag[i] = 1
|
43 |
+
|
44 |
return np.array(bag)
|
45 |
|
46 |
|
47 |
def chat(message, history):
|
|
|
|
|
|
|
48 |
history = history or []
|
49 |
message = message.lower()
|
50 |
+
results = model.predict([bag_of_words(message, words)])
|
51 |
+
results_index = np.argmax(results)
|
52 |
+
tag = labels[results_index]
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
for tg in data["intents"]:
|
55 |
+
if tg['tag'] == tag:
|
56 |
+
responses = tg['responses']
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# print(random.choice(responses))
|
59 |
+
response = random.choice(responses)
|
60 |
+
|
61 |
history.append((message, response))
|
62 |
return history, history
|
63 |
|
64 |
+
chatbot = gr.Chatbot(label="Chat")
|
65 |
+
css = """
|
66 |
+
footer {display:none !important}
|
67 |
+
.output-markdown{display:none !important}
|
68 |
+
.gr-button-primary {
|
69 |
+
z-index: 14;
|
70 |
+
height: 43px;
|
71 |
+
width: 130px;
|
72 |
+
left: 0px;
|
73 |
+
top: 0px;
|
74 |
+
padding: 0px;
|
75 |
+
cursor: pointer !important;
|
76 |
+
background: none rgb(17, 20, 45) !important;
|
77 |
+
border: none !important;
|
78 |
+
text-align: center !important;
|
79 |
+
font-family: Poppins !important;
|
80 |
+
font-size: 14px !important;
|
81 |
+
font-weight: 500 !important;
|
82 |
+
color: rgb(255, 255, 255) !important;
|
83 |
+
line-height: 1 !important;
|
84 |
+
border-radius: 12px !important;
|
85 |
+
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
|
86 |
+
box-shadow: none !important;
|
87 |
+
}
|
88 |
+
.gr-button-primary:hover{
|
89 |
+
z-index: 14;
|
90 |
+
height: 43px;
|
91 |
+
width: 130px;
|
92 |
+
left: 0px;
|
93 |
+
top: 0px;
|
94 |
+
padding: 0px;
|
95 |
+
cursor: pointer !important;
|
96 |
+
background: none rgb(37, 56, 133) !important;
|
97 |
+
border: none !important;
|
98 |
+
text-align: center !important;
|
99 |
+
font-family: Poppins !important;
|
100 |
+
font-size: 14px !important;
|
101 |
+
font-weight: 500 !important;
|
102 |
+
color: rgb(255, 255, 255) !important;
|
103 |
+
line-height: 1 !important;
|
104 |
+
border-radius: 12px !important;
|
105 |
+
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
|
106 |
+
box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
|
107 |
+
}
|
108 |
+
.hover\:bg-orange-50:hover {
|
109 |
+
--tw-bg-opacity: 1 !important;
|
110 |
+
background-color: rgb(229,225,255) !important;
|
111 |
+
}
|
112 |
+
div[data-testid="user"] {
|
113 |
+
background-color: #253885 !important;
|
114 |
+
}
|
115 |
+
.h-\[40vh\]{
|
116 |
+
height: 70vh !important;
|
117 |
+
}
|
118 |
+
"""
|
119 |
demo = gr.Interface(
|
120 |
+
chat,
|
121 |
+
[gr.Textbox(lines=1, label="Message"), "state"],
|
122 |
+
[chatbot, "state"],
|
123 |
allow_flagging="never",
|
124 |
+
title="Mental Health Bot | Data Science Dojo",
|
125 |
css=css
|
126 |
)
|
|
|
127 |
if __name__ == "__main__":
|
128 |
demo.launch()
|